Supercomputers Help In COVID-19
Keywords:
Summit, COVID-19, Supercomputer, GPU, Molecular Docking, DrugsAbstract
The earnest quest for medications to battle COVID-19 has incorporated the utilization of supercomputers. The utilization of advancements like universally useful graphical preparing units (GPUs), huge parallelism, new programming for elite registering (HPC) has permitted investigated to look for the huge synthetic space of potential medications quicker. Another medication conveyance pipeline was created utilizing Summit supercomputer at Oak Ridge National Laboratory with the assistance of arising stages which use GPUs and permit virtual screening of potential medication compounds in no time. This exertion will speed up the way toward creating medications to battle the current COVID-19 pandemic.
How to cite this article:
Salvi HR, Mehta RS. Supercomputers Help in COVID-19. J Adv Res Comp Graph Multim Tech 2021; 3(1): 12-16.
References
Zhu N, Zhang D, Wang W, Li X, Yang Betal. A novel coronavirus from
Patients with pneumonia in China, 2019.New England Journal
of Medicine 2020; (382): 727-733. doi: 10.1056/NEJMoa2001017
N. S. Pagadala, S. Khajamohiddin, and J. Tuszynski,” Software for molecular docking: a review,” Biophysical reviews, 9, no. 2, pp. 91–102, 2017.
S. T. Kurkinen, S. Latti, O. T. Pentik ¨ ainen, and P. A. Pos-
¨ tila, “Getting Docking into Shape Using Negative
Image Based Rescoring.” Journal of Chemical Informatics and Modeling 59, no. 8. p. 3584–3599, 2019.
S. Y. Tan and Y. Tatsumura, “Alexander Fleming (1881- 1955): discoverer of penicillin.” Singapore medical journal 56, no. 7. p. 366, 2015.
A. Acharya, R. Agarwal, M. Baker, J. Baudry, D. Bhowmik,
S. Boehm, et al, “Supercomputer-Based Ensemble Docking
Drug Discovery Pipeline with Application to Covid-19,” ChemRxiv, July 2020 doi: 10.26434/chemrxiv. 12725465.v1.
S. LeGrand, A. Scheinberg, A. F. Tillack, M.
Thavappiragasam, J. V. Vermaas, R. Agarwal, et al,
“GPU Accelerated Drug Discovery with Docking on the Summit Supercomputer: Porting, Optimization, and Application to COVID-19 Research,” ACM BCB 2020 (pending publication,
https://doi.org/10.1145/3388440.3412472)
G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” Journal of Computational Chemistry, 30, no. 16, pp. 2785–2791, 2009.
A. Ton, F. Gentile, M. Hsing, F. Ban, and A. Cherkasov,
“Rapid Identification of Potential Inhibitors of SARS-CoV2
Main Protease by Deep Docking of 1.3 Billion Compounds,” Molecular Informatics, 39, 2000028, 2020.
J. Lyu, S. Wang, T. E. Balius, I. Singh, A. Levit, Y. S. Moroz, et al, “Ultra-large library docking for discovering new chemotypes,” Nature, 566, p. 224–229, 2019.
D. Santos-Martins, J. Eberhardt, G. Bianco, L. Solis Vasquez, F. A. Ambrosio, A. Koch, and S. Forli, “D3R Grand
Challenge 4: prospective pose prediction of BACE1 ligands with Auto Dock-GPU,” Journal of Computer-Aided Molecular Design, 33, no. 12, pp. 1071– 1081, 2019.
A. J ´ as, ´ A. R ´ ak, I. Ladj ´ anszki, and G. Cserey, “Classical ´ molecular dynamics on graphics processing unit
architectures,” WIREs Computational Molecular Science, 10, no. 2, 2020 doi:10.1002/wcms.1444.
A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto, G. M. Rignanese, G. Hautier, and D. Gunter,