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Introduction
Cloud computing clients in various application domains 
want to be assured that their data is accurate and trust-
worthy. On the other hand, blockchain is a tamper-proof 
digital ledger that can be used alongside cloud technology 
to provide a tamper-proof cloud computing environment. 
This paper proposes a scheme that combines cloud com-
puting with blockchain that assures data integrity for all 
homomorphic encryption schemes. Given its widespread 

accessibility, cloud services are vulnerable to attacks. Data 
manipulation is a serious threat to data integrity that can 
occur in cloud computing, a relatively new offering under 
the umbrella of cloud services. In order to reduce the dan-
gers connected with cloud computing, the Cloud Security 
Alliance (CSA) has outlined crucial shared obligations for 
cloud service providers (CSPs) and their clients. Yu-Chi 
Chen, an associate editor, oversaw the manuscript’s review 
process and gave the go-ahead for publishing.

Blockchain technology is one of the backbone technologies used in 
crypto-currency that has received a lot of attention in the last decade 
and act as a necessary technology behind like Bitcoin, which is a pop-
ular digital Cryptocurrency. Blockchain technology act as a distributed 
ledger with records of transactions containing all the data details of 
the transactions carried out and it will be distributed among the nodes 
present in the entire network. All the transactions carried out in the 
system are confirmed by mechanisms, and the data once stored can-
not be altered or modified. On the other hand, “Cloud computing is a 
practice of using a network of remote servers hosted on the internet 
for the purpose of using to compute, storage, and managing the data, 
rather than on a local server or a personal computer”. Making a single 
system by combining both the concepts of cloud computing and block-
chain technology that can improve the efficiency of network control, 
task scheduling, data integrity, resource management, fair pricing, 
payment, and resource allocation in the day-to-day activities. In this 
review article, we have mentioned some of the significant opportuni-
ties and challenges faced by the cloud and proposed their solutions by 
integrating it with blockchain technology to enhance the ability. We 
tried to investigate a brief survey on earlier studies focused on cloud 
integrating with the blockchain technology. In this, we have also de-
veloped architecture integrating blockchain with cloud revealing the 
communication between blockchain and cloud.

Keywords: Blockchain Technology, Cloud Computing, Cryptocur-
rency, Homomorphic Encryption
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Recording, designing, and implementing internal and cli-
ent security controls are the responsibilities of CSP. The 
Consensus Assessments Initiative Questionnaire (CAIQ) is 
a tool used in the design and implementation process. A 
Cloud Control Matrix (CCM) is a tool used by cloud con-
sumers to record the individuals responsible for putting 
particular controls into place as well as the methods they 
employ. In order to account for the considerable differences 
in the process model that are anticipated to arise during 
the development of a cloud project, a high-level process 
model for cloud security management has also been estab-
lished. The key is to ascertain the prerequisites, organise 
the architecture, and identify any gaps in relation to the 
capabilities of the underlying cloud platform.

The top 11 threats were categorised into 14 security do-
mains, which are further divided into the governance and 
operational domains, by a recent CSA poll that collated the 
most important security challenges pertaining to cloud 
computing. While the operational domain is more con-
cerned with tactical security issues, the governance domain 
concentrates on strategic and policy issues within a cloud 
computing environment. The majority of security issues give 
rise to several kinds of threats, such as denial-of-service 
attacks, data manipulation, information leakage, spoofing, 
and elevation of privilege. An unauthorised entity releas-
ing, analysing, stealing, or using vital, secure, or secret 
information is said to have committed a data breach. A 
data breach may arise due to human error, implemen-
tation weaknesses, insufficient security protocols, or as 
the primary objective of a targeted attack. A data breach 
occurs when any information that was not intended for 
public consumption is disclosed.

More specifically, encryption and key-related issues that 
affect data secrecy and completeness can be caused by 
inadequate key management systems and inappropriate 
encryption algorithms. Confidentiality, integrity, and avail-
ability are essential components of cloud security, just 
like they are for any information security management 
system. Confidentiality and privacy are directly tied to the 
issue of data breaches. While privacy refers to a client’s 
right to determine how their data is treated, confidenti-
ality demands that sensitive client data not be shared to 
any unapproved organization. Encryption algorithms are 
employed to meet both data confidentiality and privacy 
needs. Several cryptographic approaches have been put 
forth to maintain the security of processed and/or stored 
data. On cloud computing systems, several symmetric key 
encryption techniques have been implemented. By putting 
out a verification scheme founded on the ideas of BFT and 
blockchain technology, we solve these current issues. It will 
be necessary to employ multiple CSPs to store and process 
client data. Each CSP that wants to store their database 
on a public blockchain like Ethereum or Bitcoin will need 

to calculate the master hash value of their database on a 
regular basis. These CSPs do not need to collaborate or 
communicate with one another. To find out if there has 
been data tampering, a client can compare these master 
hash values. This distributed verification mechanism com-
pares master hash values maintained on the blockchain 
to ensure integrity and confidentiality (HE will be used for 
encryption).

Homomorphic Encryption (HE)
The process of converting data into ciphertext so that it 
can be used for operations on encrypted data without 
gaining access to the private decryption key; the private 
key should only be held by the data owner.

In the process of applying arithmetic operations to encrypt-
ed data, the same results should be gotten as in the case of 
unprocessed data. The data owner generates the public-key 
pair (a public key puk and a private key prk) during the first 
step of the HE process, known as key generation (KeyGen). 
The data C = Encpuk (P) is encrypted using the encryption 
algorithm in the next step, the encryption process Enc, 
before it is sent to the cloud server. The encrypted data 
and the puk are kept in a database on the cloud server. 
The cloud server uses the encrypted data to carry out the 
specified calculation and then returns the encrypted result 
to the client upon request. This is referred to as the Eval, 
or assessment process. The client can process Dec, the 
decryption function, and retrieve the plaintext by using 
the matching prk. To sum up, KeyGen, Enc, Eval, and Dec 
are the four primary processes of HE. Even while homo-
morphic cryptosystems have advantages, not all designs 
are IND-CCA2 secure because to their malleability.

This may result in inaccurate calculations that are out-
sourced. It is noteworthy that same issues may arise in 
the absence of decryption. CSP still has the ability to un-
dermine data integrity and do it covertly. For instance, 
without being aware of the contents of the substituted 
data, the CSP is able to implicitly replace a given ciphertext 
or the cumulative result with other legitimate ciphertexts. 
There is no way to get back the original data after integ-
rity is lost. Therefore, data integrity needs to be enforced 
on such outsourced computations. Furthermore, a CSP 
is regarded as a third party that a client hires to handle 
intricate calculations. 

Data integrity is further threatened by the fact that these 
computations are centralized and that anyone has the 
power to alter data. Because Secure Shell (SSH) lacks 
authentication functionality, using it to overcome these 
problems is not possible. In order to create a safe CSP 
platform, a strong, impenetrable, and verifiable securi-
ty architecture is required in addition to homomorphic 
data encryption. These are the characteristics of the BC 
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architecture, which consists of a peer-to-peer network 
working to validate blocks managing a distributed ledger 
(or database) of aggregated transactions. The architecture 
of CSP and BC technologies appears to be at odds with one 
another—centralization vs decentralization. Nonetheless, 
CSP and BC can work in concert to provide a single solution 
that maximizes each of their advantages.

Blockchain Technology (BC)
The use of BC approaches in cloud environments has gar-
nered a lot of interest from academic and industrial sectors. 
Fundamentally, BC technology is made up of dispersed 
digital blocks connected to one another by cryptographic 
rules. Each block has transaction data, a timestamp, and 
a cryptographic hash of the block before it. By using a 
peer-to-peer network, BC allows all users to independently 
authenticate transactions. In order to guarantee that all 
nodes in the network agree, a consensus mechanism is 
needed to approve and record transactions in the BC. A 
block that has been validated cannot be changed later 
without also changing any blocks that come after it.

Each block has transaction data, a timestamp, and a cryp-
tographic hash of the block before it. By using a peer-
to-peer network, BC allows all users to independently 
authenticate transactions. In order to guarantee that all 
nodes in the network agree, a consensus mechanism is 
needed to approve and record transactions in the BC. A 
block that has been validated cannot be changed later 
without also changing any blocks that come after it. The 
distributed digital ledgers that are organised into blocks 
and contain transactions that are signed cryptographical-
ly. Each block is validated and goes through a consensus 
decision process before being cryptographically linked to 
the preceding one, making it tamper obvious. Older blocks 
become harder to change when new ones are introduced, 
resulting in tamper resistance. Within the network, new 
blocks are replicated across copies of the ledger, and any 
conflicts are automatically resolved by applying predefined 
rules. Many companies are creating cloud-based BCs in 
response to the growing interest in BC technologies. Based 
on the Software as a Service (SaaS) model, well-known CSPs 
have offered Blockchain as a Service (BaaS) to their clients. 
Using open-source software platforms like Ethereum and 
Hyperledger Fabric, which enable developers to produce 
and share information, Amazon Managed Blockchain was 
introduced. Because BC technology’s architecture makes 
use of well-known computer science procedures, cryp-
tographic primitives, and record-keeping concepts, it is also 
known as “trust machines.” A cryptographic hash function, 
which is used for address derivation, unique identity cre-
ation, block data security, and block header security, is 
the primary component of a BC network. Three primary 
characteristics are taken into consideration while designing 

hash functions: collision resistance, second preimage re-
sistance, and preimage resistance. Different standards for 
NIST-approved hash functions were set under the Federal 
Information Processing Standard (FIPS) . CPUs like Intel have 
specific instruction sets that enable hardware acceleration 
of the SHA family, which improves computation efficiency.

The output of SHA-2 is 32 bytes (1 byte equals 8 bits, 
32 bytes equals 256 bits), and it is typically shown as a 
64-character hexadecimal string. Certain proof-of-work 
(PoW) consensus algorithms also employ hash functions 
like SHA-2. A BC’s core component is its consensus process 
or mechanism, which is used to choose which nodes will 
publish new blocks.

BC technology can save businesses time and money while 
also fostering better justice and transparency. The market 
is home to a wide range of BC-based applications involv-
ing several industries, including supply chain, business, 
healthcare, cybersecurity, cryptocurrency, and the Internet 
of Things.46 Our suggested project makes use of crypto-
currencies, which are among the first and undoubtedly 
the most well-known applications of BC technology. We 
will be employing Ethereum and Bitcoin, two of the most 
well-known cryptocurrencies available right now.

Bitcoin
The first and most well-known cryptocurrency on the mar-
ket was Bitcoin (BTC), which was introduced by Nakamoto 
in 2008.48 Bitcoins (BTCs) are earned as rewards for solving 
the PoW puzzle through mining, and they can be moved 
between Bitcoin accounts. Every transfer is documented 
as a transaction that is kept on the BC in a block. The iden-
tical copy of the Bitcoin BC is stored on every node that is 
involved. Block leaders are chosen from among the nodes 
that successfully compute the PoW to build, announce, and 
append a new block to the BC. Other nodes will accept the 
new block and add it to their own copies of the BC if all of 
the transactions in it are legitimate.

Digital wallets are necessary for cryptocurrencies to handle 
key pairs and enable transactions. The primary functions 
of the Bitcoin wallet are to compute public addresses 
and hold the private key needed to redeem Bitcoin. BTCs 
are not physically kept in the wallet from a technological 
standpoint. Rather, they are located on the BC and are only 
accessible by those who with the appropriate private keys. 
Transactions can also be “signed” with the use of private 
keys. All of the main operating systems and apps are com-
patible with free Bitcoin wallets, which are made to meet 
a range of user needs. Numerous systems provide a wide 
range of wallet options. Although they all have some com-
parable qualities, each wallet has its own unique features. 
A shared wallet referred to as the multi-signature wallet, 
or multisig wallet, is one of the most beneficial features. 
A minimum of one key is necessary to approve a Bitcoin 
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transaction in a multisig wallet, which can be accessed by 
two or more keys. Apart from typical transactions, which 
are signed by a single private key owner, several signa-
tures are needed before the money is transmitted. Since 
it limits what may be done with Bitcoin, it is more secure. 
To be more precise, in the event that one of the wallets 
is compromised, the hacker will be unable to spend Bit-
coin from the shared wallet without permission from the 
other owners. Additionally, it prevents other parties from 
controlling purchases in a community and tracks involved 
parties by accessing a single wallet’s transaction history.

Ethereum
Ethereum is a network of separate computers that work 
as a single supercomputer rather than merely a crypto-
currency network. It is adaptable, enabling transactions to 
be established over networks with or without permission. 
Since it’s a BC-based platform for smart contract execution, 
it offers support for more than simply bitcoin transactions.

The Ethereum Virtual Machine is the name of this platform 
(EVM). To run on the EVM, each smart contract is compiled 
into a unique bytecode. A smart contract can define any 
kind of rule or functionality because the Ethereum platform 
is Turing-complete. Externally owned accounts (EOA) and 
contract accounts (CA) are the two primary account kinds in 
Ethereum. Unlike CAs, which contain accompanying code, 
EOAs are managed by private keys and lack it. Although in 
distinct ways, these accounts are able to speak with those 
who are identical to them as well as with each other. Ether 
is the name of the currency that peers in the Ethereum 
network exchange among themselves.

An Ethereum wallet can be either a standard wallet (like 
a Bitcoin wallet) or a smart contract wallet that can use 
the Solidity programming language to create, execute, or 
trigger smart contracts in a CA, depending on the kind of 
account. Simple wallets and multisig wallets are the two 
types of wallets that contracts can implement. A multisig 
wallet contains many owner accounts, including the cre-
ator’s account, in contrast to a simple wallet, which typically 
only has one account that manages and owns the wallet.

Proposal Design
The technologies that underpin the verified computation 
design are BC and CSP, both of which are extremely import-
ant. Before introducing our suggested design, we first go 
over the client verification procedure of operations applied 
to the requested data. To accomplish immutability, we start 
by using several paths for computations and then store 
the results on the BC. The multi-CSPs, BC-application, and 
client—whose responsibilities are described below—will 
make up the three primary parts of the verification process, 
which align with the three main stages of the suggested 
verification scheme:-

Multi-CSPs: A customer may use multiple CSPs.

Although each formed CSP and the customer have sepa-
rate contracts, all are bound by the same conditions. The 
hired CSPs will carry out the calculations, and after they 
are finished, they will create a master hash for their data-
base and send the outcome to the BC-based application.

Application based on BC: generates new blocks including 
the master hashes as a transaction and sends the block 
header back to CSP.

Client: Using the block header data they have received, 
clients can verify by comparing the master hash values 
from each CSP.

The frequency of computing master hash values (defined by 
a frequency variable, t) and the associated cryptocurrency 
wallet are the two primary factors that govern the design 
workflow, and the client should ascertain these before 
going through a full explanation of each step. The number 
of calculations a client requests before several CSPs are 
needed to calculate the master hash of their respective 
databases is determined by t. T’s value is determined by 
two primary components. The client’s data growth % is 
the first, and his capacity to pay the BC transaction costs 
is the second.

CSP - Computation Phase
We take some of BC’s BFT consensus features and apply 
them to verification in the CSP environment. The distributed 
ledger’s characteristics and hash algorithms will both be 
used in the proposed study. The proposal adopts the idea 
of using numerous nodes to create a new block, allowing 
the client to obtain support from various CSPs rather than 
just one. The BFT scenario is used to calculate the number 
of CSPs that are hired. When there are two f + 1 CSPs in 
a system and f of them are Byzantine (or malicious), the 
malicious CSPs work together to say random things to the 
other f + 1 nodes. As an illustration, a system is trying to 
agree on the result of the calculation (x). N = 2f + 1 = 3 can 
be used to determine the number of CSPs if f = 1. CSP-A, 
CSP-B, and CSP-C are the designations for the three CSPs, 
respectively. Figure 3 shows how CSP-C can stop all three 
CSPs from reaching a consensus, assuming that CSP-C is 
Byzantine. While notifying CSP-B that its outcome is x, 
CSP-C notifies CSP-A that its outcome is y. Because this 
is the conclusion with the most votes, CSP-A and CSP-B 
both accept the outcomes y and x, respectively, because 
the results from CSP-C correspond to both of their own 
results. Consequently, to tolerate one Byzantine node, N 
= 4 CSPs must be met as a minimum. The analysis of the 
suggested work will be done assuming that at least N = 4 
CSPs exist. The points that follow summarize the tasks t 
at a single CSP will complete are:

1. Determine the database’s master hash value using 
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SHA-2 after t times of specified calculations.
2. The master hash is stored by the CSP in a transaction 

log, after which it is sent to the mining pool for storage 
inside the BC network.

The suggested work depends on the absence of direct com-
munication between the various CSPs in order to prevent 
51% assaults. This will actually be the case because these 
CSPs can come from various businesses or organizations. 
In the event that the CSPs are able to establish direct 
communication with one another, the presence of three 
malevolent CSPs may result in peer consensus over inac-
curate data and transaction documentation that uses the 
incorrect master hash. Rather, the BC assists in achieving 
authentication.

Blockchain - Master Hash Phase
We take into consideration two well-known cryptocurren-
cies, Ethereum and Bitcoin, to store the master hash values. 
The transfer of money from the CSP’s wallet to the network 
is the identical for both Bitcoin and Ethereum, despite their 
distinct structures and features. Detailed explanations of 
each of these processes will be given.

Bitcoin 
Step 1 - Setting up BTC wallet: One multi-signature 
wallet will be provided to the client for each of the four 
CSPs who were hired. Each wallet will generate three 
signature keys, of which at least two thirds must be used 
in order to conduct Bitcoin transactions. The client has 
access to two keys, whereas CSP is in possession of the 
third key. The client’s keys must be kept in two separate 
places: one is in the client’s wallet, and the other is kept 
as a backup recovery key in a secure location. As a result, 
the client possesses the bulk of the keys, and the second 
key is still functional even if the first key is misplaced. For 
the suggested method to be used, wallets must contain a 
minimum of 546 Satoshis, or 0.00000546 BTC, after they 
have been enabled.

Step 2 - Prepare raw transaction and embed master 
hash: Assuming that the shared wallets have already been 
created and the master hash is prepared for storing in the 
Bitcoin BC, this step can be carried out. The following are 
the specific actions to prepare the raw transaction and 
incorporate the master hash value:

1. Create multisig transaction address: Every CSP and cli-
ent must generate a distinct pair of cryptographic keys, 
comprising a public key and matching private key. The 
two public keys will be used to create a multisig address.

To establish two distinct addresses—one for the input and 
the other for the output— this process is repeated twice. 
This enables the exchange of Bitcoins between two distinct 
addresses within a single wallet.

2. Creating raw transaction and writing master hash in 
transaction data: A set of information describing a Bit-
coin transaction is called a transaction. The suggested 
work will only modify the ScriptPubKey data output 
and adhere to the standard transaction data structure.

The purpose of the Bitcoin network is to record financial 
transactions, not to hold random data. On the other hand, 
programmers have devised a variety of methods based on 
several standard scripts for encoding data in transactions. 
The two kinds of scripts that we are interested in are the 
NULL DATA script and the Pay To Pubkey Hash (P2PKH) 
script. The programmer can store any kind of data where 
the hashed public key should be in the first scheme (the 
P2PKH script). This indicates that there are just 160 bits 
available for data encoding. If the master hash was comput-
ed using SHA-1 rather than SHA-2, the CSP could implement 
this scheme. However, because it negatively affects users’ 
RAM, this strategy raises issues with performance as well 
as security (shorter hash values can result in attacks). The 
inability to quickly separate the output from the typical 
locking script is the root cause of the efficiency issues. The 
standard script NULL DATA, which enables the pushing of 
metadata onto the BC, is the foundation of the second ap-
proach. The concept operates by appending a NULL DATA 
lock script to an extra output. The security and efficiency 
issues of the first scheme are resolved by this script. With 
Bitcoin Core version 0.12.0, 83 bytes of metadata can 
be stored at most. Therefore, there is no need to save 
information in the UXTO database, freeing up RAM. For a 
transaction to be approved as a regular transaction, it can 
only have one NULL DATA locking script.

We will be using this method since the suggested strategy 
uses SHA-2 to produce master hash values.

Step 3 - Signing transaction and broadcasting to the Bitcoin 
network: Spending from a multisig address requires the 
client and CSP to sign the encrypted transaction using their 
respective private keys. The encoded transaction is then 
broadcast to the network by the CSP, where miners gather 
it and incorporate it into blocks, which are then added to 
the Bitcoin BC once the PoW is generated.

Ethereum
Externally Owned Accounts

Step 1: Configuring an Ethereum wallet Standard Ethe-
reum wallets provide a public Ethereum address for user 
accounts in addition to storing private keys. To perform 
an ETH transaction, each of the hired CSPs has to get a 
normal wallet. Stated differently, the CSPs must be light 
nodes. However, EOA does not support multi-signatures.

Step 2: Get the transaction ready and embed the master 
hash.
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Step 3 - Signing transaction and broadcasting to Ethereum 
network: A transaction must be signed by the initiator 
account’s private key in order to be published on the 
Ethereum network. The executed deal is delivered to the 
local Ethereum node, which verifies that the signed trans-
action was actually signed by the address associated with 
this account. The signed transaction is broadcast to every 
peer in the network at the end of the process.

Smart Contract Accounts
Step 1 - Setting up ETH wallet: An Ethereum smart contract 
that is used to store ETH that is owned by numerous parties 
is called a multisig wallet. A certain number of shareholders 
must authorise each transaction. The client will roll out four 
shared smart wallets—one for each CSP—as part of the 
proposed plan. Each shared smart wallet will have three 
owner accounts: the CSP and two client accounts.

Applying the two-thirds rule allows a transaction to be 
approved. ETH can be transmitted to this wallet, just like 
any other Ethereum address, once the shared smart wallet 
between the client and CSPs has been launched.

Step2 - Prepare raw transaction and embed master hash: 
Transactions are used in the Ethereum network to install 
smart contracts. Although the data included in the trans-
action is different from an EOA, the transaction structure 
is the same.56 The bytecode and any encoded arguments 
that a constructor may require should be included in the 
input data. The CSP will use submit_Transaction to place 
an ETH exchange order in order to deploy a multisig con-
tract to the Ethereum network. If there is enough ETH in 
the wallet, this can be done. In response, CSP receives a 
transaction_Id or hash code. This transaction_Id will be 
made available to clients by the CSP so they can verify it. 
The client can use the transaction_Id to verify the trans-
action data after receiving it from CSP.

Step 3 - Signing transaction and broadcasting to Ethereum 
network: All accounts in an Ethereum network follow the 
same procedure in sending out the transactions: signing 
the transactions with the private key and broadcasting 
transaction to local nodes which are responsible for validat-
ing and redistributing the transaction to their own peers.

Client Phase – Verification
It is now the client’s responsibility to confirm that the 
values supplied by each CSP are the same after saving 
the master hash in the BC. Since the platforms utilised in 
this research vary in their verification requirements, this 
procedure will be covered individually for the Bitcoin and 
Ethereum models.

Bitcoin Verification
If the client chooses the Bitcoin platform, verifying the 
master hash values is straightforward. This is because each 

hired CSP has multisig wallets; in order to transact BTC, the 
client must first consent. The client can view the stored 
data value inside the transaction when they are required 
to consent to a BTC transaction.

However, especially if the data is little, it makes no sense 
for the client to keep checking it in this manner. There-
fore, the relevant block headers of the blocks containing 
these transactions can be resorted to at any moment if 
the client wishes to confirm the hash values. A four-byte 
long timestamp in the block header shows when the block 
was added to the BC.

Ethereum Verification
The Ethereum verification process varies based on the kind 
of account being utilised. Every CSP for EOAs must transmit 
the block header to the client for every transaction. This 
enables the customer to monitor every transaction and 
carry out validation. Regarding CAs, the multisig wallets 
contain the block headers linked to the CSPs’ transactions 
that the client can access. Therefore, the timestamp in-
formation in each block header can be used to conduct 
the verification procedure. The ability of the CA- based 
method to set up a shared wallet, which speeds up the 
data verification procedure, makes it superior than EOA.

Result and Discussion
This section presents a theoretical assessment of the sug-
gested scheme’s performance and implementation costs 
using each model connected to BC. These computations 
are meant to identify the model with the best online per-
formance and the most viable financial solution. In our 
computations, we do not account for the cost of hiring the 
CSPs or the hash function computation time.

Cost Analysis
Bitcoin-Based Cost Analysis

The suggested plan will only rely on the smallest BTC trading 
quantity feasible, taking into account network needs and 
transaction fees, due to the extreme high price of BTC.

Early in 2020, information was released indicating that the 
average transaction cost is 0.00001 BTC, or roughly $0.09.

Generally speaking, the minimum BTC trading amount 
depends on the client’s method of obtaining BTC (such as 
through a cryptocurrency exchange).

Assume for the purposes of argument that the client se-
lects a Luna that enables users to purchase Bitcoin for 
0.75 dollars. The transaction costs are quite similar to the 
amount of Bitcoin that is being held; eventually, the fee 
for redeeming a new transaction will exceed the amount 
that the client is transferring. Transactions with outputs 
less than a predetermined size will automatically be de-
leted due to dust regulations. The effectiveness of our 
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approach will suffer if any of these issues arise. To put it 
more succinctly, it slows down the chaining of the trans-
action in a block, which can lead to notable delays in the 
time intervals between established blocks for each CSP or 
even the inability of one of the CSPs to block a transaction.

Ethereum-Based Cost Analysis
One way to store data in the data storage of a smart 
contract is to store random data as a variable. The cost 
of storing data depends on how many SSTORE operations 
are performed. One SSTORE transaction—costing 20,000 
gas—is needed to transform data from zero to non-zero 
in order to store a master hash value of 32 bytes. As was 
already established, a transporter must pay at least 21,000 
petrol for each operation. The operation’s data payload, 
which consists of the actual data and function signature, 
results in additional gas usage. The process of creating 
the smart contract itself also has an additional expense.

An estimated 0.010 USD will be spent overall (20, 000 + 
21, 000 + 32 68 petrol). Preserving data as a log event is 
the second choice. Numerous factors must be taken into 
account in order to calculate cost.

First, each byte of data in a log topic costs an extra 8 gas, 
and logged data is preserved in log topics at a cost of 375 
gas. Using a log event to store 32 bytes of data is roughly 
estimated to cost 0.005 USD (21, 000 + 375 + 32 8 gas).

Included are the fixed costs for both the data payload and 
the carrier operation. Although more effective, storing and 
altering data as a variable in a CA is less flexible because of 
the Solidity language’s limitations on the kinds of values 
and lengths.

Performance Analysis
The transaction price—the miner’s compensation for add-
ing the transaction in a block—and network congestion 
determine how well the BC network performs. The profit 
percentage must be raised to draw miners, which raises the 
total cost, if the customer want to shorten the transaction’s 
wait time. On the other hand, cutting costs will result in 
longer wait times. When master hash values from various 
CSPs take too long to appear in a block or appear in different 
blocks at different times, it might cause synchronization 
issues. Therefore, there is a trade-off between performance 
and client- borne overhead costs. Moreover, extra tasks 
unique to a certain strategy can influence performance. 
While master hash values in an Ethereum transaction can 
be embedded without the need for opcodes, CSPs embed 
them in Bitcoin transactions utilizing the NULL DATA script. 
On the other hand, storing the master hash with CA options 
will necessitate numerous function calls.

Security Analysis

Confidentiality: Since the client should already be using HE 

while storing data in the cloud, confidentiality is guaranteed 
by default. The client must possess the associated private 
key in order to decrypt the data, which is encrypted using 
the public key. Consequently, client data can be accessed 
using this cryptosystem without being revealed to unau-
thorized parties, such as the CSP.

Privacy: A CSP may be authorized by the customer to handle 
data processing under the HE scheme. This is accomplished 
by giving the CSP access to the encrypted data’s public key. 
Client data is thereby protected against unauthorized or 
false collection, usage, and/or disclosure assaults.

Integrity: The author postulates that computation attacks—
that is, computations not requested by the client—can be 
carried out by a malevolent CSP.

There are a minimum of four CSPs according to the BFT 
consensus principle. The master hash for each of these 
CSPs’ databases must be generated and saved on the BC. 
Clients will receive the block header for the purpose of 
verification.

The malicious CSP will be identified when the client com-
pares the master hash values of all the CSPs, since its hash 
value will be different from everyone else’s. Client data is 
therefore not altered or removed in an illegal or covert way.

Implementation Analysis and Future Work
Because it does not necessitate creating scripts to reengi-
neer the cloud structure or alter the architecture of CSP 
processing, the concept is simple to implement. All that 
needs to happen is for the CSP to carry out extra tasks. The 
CSP database’s hash value is first calculated, and it is then 
embedded within a BC transaction. Because a client can 
hire as many CSPs as they want as long as there are at least 
four, the suggested approach is also scalable. Moreover, 
there is no need for consensus-building or communication 
amongst the CSPs themselves under the suggested plan. As 
a result, the suggested plan is free from issues caused by 
erratic data and CSP desynchronization with the client. The 
suggested system, in spite of its many benefits, is unable 
to reveal which data records have been compromised or 
altered. Our goal for future work is to put in place a fea-
ture that can identify the inaccurate data records in the 
CSP database.

Conclusion
This article addresses cloud computing data breaches 
and the cloud service provider’s all-encompassing juris-
diction over client data activities. We suggest a method 
that strengthens the client’s capacity to safeguard info. 
The suggested method uses homomorphic encryption to 
protect the privacy and confidentiality of data while it is 
being computed by third parties.

A novel solution based on a distributed network of cloud 
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service providers and Byzantine Fault Tolerance consensus 
is developed to guarantee data integrity and identify data 
tampering from the cloud service provider itself. The various 
cloud service providers do not need to communicate di-
rectly with one another under the suggested arrangement. 
Cloud service providers must compute the master hash 
values of their databases and store them on blockchain 
networks, such as Ethereum or Bitcoin, in order to give 
the client immutable verification data. To accommodate 
various client needs, we offered a quantitative study of 
overhead expenses based on a number of time possibilities. 
When routinely producing master hash verification values 
every 30 minutes, embedding the master hash value as a 
log event in the Ethereum network has proven to be the 
least expensive of all the options (around $88 USD yearly). 
However, the architecture where the master hash values 
are included as a variable in an Ethereum transaction offers 
the best online performance. Additionally, we examined 
the security specifications and clarified the simplicity of 
proposed work.
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