
Review Article

Journal of Advanced Research in Cloud Computing, Virtualization and Web Applications
Copyright (c) 2024: Author(s). Published by Advanced Research Publications

J. Adv. Res. in Cloud Computing, Virtualization and Web Applications
Volume 7, Print Issue 1 - 2024, Pg. No. 8-16

Peer Reviewed Journal

I N F O A B S T R A C T

E-mail Id:
nishaarora@pcte.edu.in
Orchid Id:
https://orcid.org/0009-0002-1603-3387
How to cite this article:
Arora N, Parashar K. A Review: Cloud Computing
and Blockchain Integration. J Adv Res Cloud Comp
Virtu Web Appl 2024; 7(1): 8-16.

Date of Submission: 2024-03-17
Date of Acceptance: 2024-04-20

A Review: Cloud Computing and Blockchain
Integration
Nisha Arora1, Kapil Parashar2

1,2PCTE Group of Institutes, Baddowal.

Introduction
Cloud computing clients in various application domains
want to be assured that their data is accurate and trust-
worthy. On the other hand, blockchain is a tamper-proof
digital ledger that can be used alongside cloud technology
to provide a tamper-proof cloud computing environment.
This paper proposes a scheme that combines cloud com-
puting with blockchain that assures data integrity for all
homomorphic encryption schemes. Given its widespread

accessibility, cloud services are vulnerable to attacks. Data
manipulation is a serious threat to data integrity that can
occur in cloud computing, a relatively new offering under
the umbrella of cloud services. In order to reduce the dan-
gers connected with cloud computing, the Cloud Security
Alliance (CSA) has outlined crucial shared obligations for
cloud service providers (CSPs) and their clients. Yu-Chi
Chen, an associate editor, oversaw the manuscript’s review
process and gave the go-ahead for publishing.

Blockchain technology is one of the backbone technologies used in
crypto-currency that has received a lot of attention in the last decade
and act as a necessary technology behind like Bitcoin, which is a pop-
ular digital Cryptocurrency. Blockchain technology act as a distributed
ledger with records of transactions containing all the data details of
the transactions carried out and it will be distributed among the nodes
present in the entire network. All the transactions carried out in the
system are confirmed by mechanisms, and the data once stored can-
not be altered or modified. On the other hand, “Cloud computing is a
practice of using a network of remote servers hosted on the internet
for the purpose of using to compute, storage, and managing the data,
rather than on a local server or a personal computer”. Making a single
system by combining both the concepts of cloud computing and block-
chain technology that can improve the efficiency of network control,
task scheduling, data integrity, resource management, fair pricing,
payment, and resource allocation in the day-to-day activities. In this
review article, we have mentioned some of the significant opportuni-
ties and challenges faced by the cloud and proposed their solutions by
integrating it with blockchain technology to enhance the ability. We
tried to investigate a brief survey on earlier studies focused on cloud
integrating with the blockchain technology. In this, we have also de-
veloped architecture integrating blockchain with cloud revealing the
communication between blockchain and cloud.

Keywords: Blockchain Technology, Cloud Computing, Cryptocur-
rency, Homomorphic Encryption

mailto:nishaarora@pcte.edu.in
https://orcid.org/0009-0002-1603-3387

9
Arora N & Parashar K

J Adv Res Cloud Comp Virtu Web Appl 2024; 7(1)

ISSN: 2454-8669

Recording, designing, and implementing internal and cli-
ent security controls are the responsibilities of CSP. The
Consensus Assessments Initiative Questionnaire (CAIQ) is
a tool used in the design and implementation process. A
Cloud Control Matrix (CCM) is a tool used by cloud con-
sumers to record the individuals responsible for putting
particular controls into place as well as the methods they
employ. In order to account for the considerable differences
in the process model that are anticipated to arise during
the development of a cloud project, a high-level process
model for cloud security management has also been estab-
lished. The key is to ascertain the prerequisites, organise
the architecture, and identify any gaps in relation to the
capabilities of the underlying cloud platform.

The top 11 threats were categorised into 14 security do-
mains, which are further divided into the governance and
operational domains, by a recent CSA poll that collated the
most important security challenges pertaining to cloud
computing. While the operational domain is more con-
cerned with tactical security issues, the governance domain
concentrates on strategic and policy issues within a cloud
computing environment. The majority of security issues give
rise to several kinds of threats, such as denial-of-service
attacks, data manipulation, information leakage, spoofing,
and elevation of privilege. An unauthorised entity releas-
ing, analysing, stealing, or using vital, secure, or secret
information is said to have committed a data breach. A
data breach may arise due to human error, implemen-
tation weaknesses, insufficient security protocols, or as
the primary objective of a targeted attack. A data breach
occurs when any information that was not intended for
public consumption is disclosed.

More specifically, encryption and key-related issues that
affect data secrecy and completeness can be caused by
inadequate key management systems and inappropriate
encryption algorithms. Confidentiality, integrity, and avail-
ability are essential components of cloud security, just
like they are for any information security management
system. Confidentiality and privacy are directly tied to the
issue of data breaches. While privacy refers to a client’s
right to determine how their data is treated, confidenti-
ality demands that sensitive client data not be shared to
any unapproved organization. Encryption algorithms are
employed to meet both data confidentiality and privacy
needs. Several cryptographic approaches have been put
forth to maintain the security of processed and/or stored
data. On cloud computing systems, several symmetric key
encryption techniques have been implemented. By putting
out a verification scheme founded on the ideas of BFT and
blockchain technology, we solve these current issues. It will
be necessary to employ multiple CSPs to store and process
client data. Each CSP that wants to store their database
on a public blockchain like Ethereum or Bitcoin will need

to calculate the master hash value of their database on a
regular basis. These CSPs do not need to collaborate or
communicate with one another. To find out if there has
been data tampering, a client can compare these master
hash values. This distributed verification mechanism com-
pares master hash values maintained on the blockchain
to ensure integrity and confidentiality (HE will be used for
encryption).

Homomorphic Encryption (HE)
The process of converting data into ciphertext so that it
can be used for operations on encrypted data without
gaining access to the private decryption key; the private
key should only be held by the data owner.

In the process of applying arithmetic operations to encrypt-
ed data, the same results should be gotten as in the case of
unprocessed data. The data owner generates the public-key
pair (a public key puk and a private key prk) during the first
step of the HE process, known as key generation (KeyGen).
The data C = Encpuk (P) is encrypted using the encryption
algorithm in the next step, the encryption process Enc,
before it is sent to the cloud server. The encrypted data
and the puk are kept in a database on the cloud server.
The cloud server uses the encrypted data to carry out the
specified calculation and then returns the encrypted result
to the client upon request. This is referred to as the Eval,
or assessment process. The client can process Dec, the
decryption function, and retrieve the plaintext by using
the matching prk. To sum up, KeyGen, Enc, Eval, and Dec
are the four primary processes of HE. Even while homo-
morphic cryptosystems have advantages, not all designs
are IND-CCA2 secure because to their malleability.

This may result in inaccurate calculations that are out-
sourced. It is noteworthy that same issues may arise in
the absence of decryption. CSP still has the ability to un-
dermine data integrity and do it covertly. For instance,
without being aware of the contents of the substituted
data, the CSP is able to implicitly replace a given ciphertext
or the cumulative result with other legitimate ciphertexts.
There is no way to get back the original data after integ-
rity is lost. Therefore, data integrity needs to be enforced
on such outsourced computations. Furthermore, a CSP
is regarded as a third party that a client hires to handle
intricate calculations.

Data integrity is further threatened by the fact that these
computations are centralized and that anyone has the
power to alter data. Because Secure Shell (SSH) lacks
authentication functionality, using it to overcome these
problems is not possible. In order to create a safe CSP
platform, a strong, impenetrable, and verifiable securi-
ty architecture is required in addition to homomorphic
data encryption. These are the characteristics of the BC

10
Arora N & Parashar K
J Adv Res Cloud Comp Virtu Web Appl 2024; 7(1)

ISSN: 2454-8669

architecture, which consists of a peer-to-peer network
working to validate blocks managing a distributed ledger
(or database) of aggregated transactions. The architecture
of CSP and BC technologies appears to be at odds with one
another—centralization vs decentralization. Nonetheless,
CSP and BC can work in concert to provide a single solution
that maximizes each of their advantages.

Blockchain Technology (BC)
The use of BC approaches in cloud environments has gar-
nered a lot of interest from academic and industrial sectors.
Fundamentally, BC technology is made up of dispersed
digital blocks connected to one another by cryptographic
rules. Each block has transaction data, a timestamp, and
a cryptographic hash of the block before it. By using a
peer-to-peer network, BC allows all users to independently
authenticate transactions. In order to guarantee that all
nodes in the network agree, a consensus mechanism is
needed to approve and record transactions in the BC. A
block that has been validated cannot be changed later
without also changing any blocks that come after it.

Each block has transaction data, a timestamp, and a cryp-
tographic hash of the block before it. By using a peer-
to-peer network, BC allows all users to independently
authenticate transactions. In order to guarantee that all
nodes in the network agree, a consensus mechanism is
needed to approve and record transactions in the BC. A
block that has been validated cannot be changed later
without also changing any blocks that come after it. The
distributed digital ledgers that are organised into blocks
and contain transactions that are signed cryptographical-
ly. Each block is validated and goes through a consensus
decision process before being cryptographically linked to
the preceding one, making it tamper obvious. Older blocks
become harder to change when new ones are introduced,
resulting in tamper resistance. Within the network, new
blocks are replicated across copies of the ledger, and any
conflicts are automatically resolved by applying predefined
rules. Many companies are creating cloud-based BCs in
response to the growing interest in BC technologies. Based
on the Software as a Service (SaaS) model, well-known CSPs
have offered Blockchain as a Service (BaaS) to their clients.
Using open-source software platforms like Ethereum and
Hyperledger Fabric, which enable developers to produce
and share information, Amazon Managed Blockchain was
introduced. Because BC technology’s architecture makes
use of well-known computer science procedures, cryp-
tographic primitives, and record-keeping concepts, it is also
known as “trust machines.” A cryptographic hash function,
which is used for address derivation, unique identity cre-
ation, block data security, and block header security, is
the primary component of a BC network. Three primary
characteristics are taken into consideration while designing

hash functions: collision resistance, second preimage re-
sistance, and preimage resistance. Different standards for
NIST-approved hash functions were set under the Federal
Information Processing Standard (FIPS) . CPUs like Intel have
specific instruction sets that enable hardware acceleration
of the SHA family, which improves computation efficiency.

The output of SHA-2 is 32 bytes (1 byte equals 8 bits,
32 bytes equals 256 bits), and it is typically shown as a
64-character hexadecimal string. Certain proof-of-work
(PoW) consensus algorithms also employ hash functions
like SHA-2. A BC’s core component is its consensus process
or mechanism, which is used to choose which nodes will
publish new blocks.

BC technology can save businesses time and money while
also fostering better justice and transparency. The market
is home to a wide range of BC-based applications involv-
ing several industries, including supply chain, business,
healthcare, cybersecurity, cryptocurrency, and the Internet
of Things.46 Our suggested project makes use of crypto-
currencies, which are among the first and undoubtedly
the most well-known applications of BC technology. We
will be employing Ethereum and Bitcoin, two of the most
well-known cryptocurrencies available right now.

Bitcoin
The first and most well-known cryptocurrency on the mar-
ket was Bitcoin (BTC), which was introduced by Nakamoto
in 2008.48 Bitcoins (BTCs) are earned as rewards for solving
the PoW puzzle through mining, and they can be moved
between Bitcoin accounts. Every transfer is documented
as a transaction that is kept on the BC in a block. The iden-
tical copy of the Bitcoin BC is stored on every node that is
involved. Block leaders are chosen from among the nodes
that successfully compute the PoW to build, announce, and
append a new block to the BC. Other nodes will accept the
new block and add it to their own copies of the BC if all of
the transactions in it are legitimate.

Digital wallets are necessary for cryptocurrencies to handle
key pairs and enable transactions. The primary functions
of the Bitcoin wallet are to compute public addresses
and hold the private key needed to redeem Bitcoin. BTCs
are not physically kept in the wallet from a technological
standpoint. Rather, they are located on the BC and are only
accessible by those who with the appropriate private keys.
Transactions can also be “signed” with the use of private
keys. All of the main operating systems and apps are com-
patible with free Bitcoin wallets, which are made to meet
a range of user needs. Numerous systems provide a wide
range of wallet options. Although they all have some com-
parable qualities, each wallet has its own unique features.
A shared wallet referred to as the multi-signature wallet,
or multisig wallet, is one of the most beneficial features.
A minimum of one key is necessary to approve a Bitcoin

11
Arora N & Parashar K

J Adv Res Cloud Comp Virtu Web Appl 2024; 7(1)

ISSN: 2454-8669

transaction in a multisig wallet, which can be accessed by
two or more keys. Apart from typical transactions, which
are signed by a single private key owner, several signa-
tures are needed before the money is transmitted. Since
it limits what may be done with Bitcoin, it is more secure.
To be more precise, in the event that one of the wallets
is compromised, the hacker will be unable to spend Bit-
coin from the shared wallet without permission from the
other owners. Additionally, it prevents other parties from
controlling purchases in a community and tracks involved
parties by accessing a single wallet’s transaction history.

Ethereum
Ethereum is a network of separate computers that work
as a single supercomputer rather than merely a crypto-
currency network. It is adaptable, enabling transactions to
be established over networks with or without permission.
Since it’s a BC-based platform for smart contract execution,
it offers support for more than simply bitcoin transactions.

The Ethereum Virtual Machine is the name of this platform
(EVM). To run on the EVM, each smart contract is compiled
into a unique bytecode. A smart contract can define any
kind of rule or functionality because the Ethereum platform
is Turing-complete. Externally owned accounts (EOA) and
contract accounts (CA) are the two primary account kinds in
Ethereum. Unlike CAs, which contain accompanying code,
EOAs are managed by private keys and lack it. Although in
distinct ways, these accounts are able to speak with those
who are identical to them as well as with each other. Ether
is the name of the currency that peers in the Ethereum
network exchange among themselves.

An Ethereum wallet can be either a standard wallet (like
a Bitcoin wallet) or a smart contract wallet that can use
the Solidity programming language to create, execute, or
trigger smart contracts in a CA, depending on the kind of
account. Simple wallets and multisig wallets are the two
types of wallets that contracts can implement. A multisig
wallet contains many owner accounts, including the cre-
ator’s account, in contrast to a simple wallet, which typically
only has one account that manages and owns the wallet.

Proposal Design
The technologies that underpin the verified computation
design are BC and CSP, both of which are extremely import-
ant. Before introducing our suggested design, we first go
over the client verification procedure of operations applied
to the requested data. To accomplish immutability, we start
by using several paths for computations and then store
the results on the BC. The multi-CSPs, BC-application, and
client—whose responsibilities are described below—will
make up the three primary parts of the verification process,
which align with the three main stages of the suggested
verification scheme:-

Multi-CSPs: A customer may use multiple CSPs.

Although each formed CSP and the customer have sepa-
rate contracts, all are bound by the same conditions. The
hired CSPs will carry out the calculations, and after they
are finished, they will create a master hash for their data-
base and send the outcome to the BC-based application.

Application based on BC: generates new blocks including
the master hashes as a transaction and sends the block
header back to CSP.

Client: Using the block header data they have received,
clients can verify by comparing the master hash values
from each CSP.

The frequency of computing master hash values (defined by
a frequency variable, t) and the associated cryptocurrency
wallet are the two primary factors that govern the design
workflow, and the client should ascertain these before
going through a full explanation of each step. The number
of calculations a client requests before several CSPs are
needed to calculate the master hash of their respective
databases is determined by t. T’s value is determined by
two primary components. The client’s data growth % is
the first, and his capacity to pay the BC transaction costs
is the second.

CSP - Computation Phase
We take some of BC’s BFT consensus features and apply
them to verification in the CSP environment. The distributed
ledger’s characteristics and hash algorithms will both be
used in the proposed study. The proposal adopts the idea
of using numerous nodes to create a new block, allowing
the client to obtain support from various CSPs rather than
just one. The BFT scenario is used to calculate the number
of CSPs that are hired. When there are two f + 1 CSPs in
a system and f of them are Byzantine (or malicious), the
malicious CSPs work together to say random things to the
other f + 1 nodes. As an illustration, a system is trying to
agree on the result of the calculation (x). N = 2f + 1 = 3 can
be used to determine the number of CSPs if f = 1. CSP-A,
CSP-B, and CSP-C are the designations for the three CSPs,
respectively. Figure 3 shows how CSP-C can stop all three
CSPs from reaching a consensus, assuming that CSP-C is
Byzantine. While notifying CSP-B that its outcome is x,
CSP-C notifies CSP-A that its outcome is y. Because this
is the conclusion with the most votes, CSP-A and CSP-B
both accept the outcomes y and x, respectively, because
the results from CSP-C correspond to both of their own
results. Consequently, to tolerate one Byzantine node, N
= 4 CSPs must be met as a minimum. The analysis of the
suggested work will be done assuming that at least N = 4
CSPs exist. The points that follow summarize the tasks t
at a single CSP will complete are:

1. Determine the database’s master hash value using

12
Arora N & Parashar K
J Adv Res Cloud Comp Virtu Web Appl 2024; 7(1)

ISSN: 2454-8669

SHA-2 after t times of specified calculations.
2. The master hash is stored by the CSP in a transaction

log, after which it is sent to the mining pool for storage
inside the BC network.

The suggested work depends on the absence of direct com-
munication between the various CSPs in order to prevent
51% assaults. This will actually be the case because these
CSPs can come from various businesses or organizations.
In the event that the CSPs are able to establish direct
communication with one another, the presence of three
malevolent CSPs may result in peer consensus over inac-
curate data and transaction documentation that uses the
incorrect master hash. Rather, the BC assists in achieving
authentication.

Blockchain - Master Hash Phase
We take into consideration two well-known cryptocurren-
cies, Ethereum and Bitcoin, to store the master hash values.
The transfer of money from the CSP’s wallet to the network
is the identical for both Bitcoin and Ethereum, despite their
distinct structures and features. Detailed explanations of
each of these processes will be given.

Bitcoin
Step 1 - Setting up BTC wallet: One multi-signature
wallet will be provided to the client for each of the four
CSPs who were hired. Each wallet will generate three
signature keys, of which at least two thirds must be used
in order to conduct Bitcoin transactions. The client has
access to two keys, whereas CSP is in possession of the
third key. The client’s keys must be kept in two separate
places: one is in the client’s wallet, and the other is kept
as a backup recovery key in a secure location. As a result,
the client possesses the bulk of the keys, and the second
key is still functional even if the first key is misplaced. For
the suggested method to be used, wallets must contain a
minimum of 546 Satoshis, or 0.00000546 BTC, after they
have been enabled.

Step 2 - Prepare raw transaction and embed master
hash: Assuming that the shared wallets have already been
created and the master hash is prepared for storing in the
Bitcoin BC, this step can be carried out. The following are
the specific actions to prepare the raw transaction and
incorporate the master hash value:

1. Create multisig transaction address: Every CSP and cli-
ent must generate a distinct pair of cryptographic keys,
comprising a public key and matching private key. The
two public keys will be used to create a multisig address.

To establish two distinct addresses—one for the input and
the other for the output— this process is repeated twice.
This enables the exchange of Bitcoins between two distinct
addresses within a single wallet.

2. Creating raw transaction and writing master hash in
transaction data: A set of information describing a Bit-
coin transaction is called a transaction. The suggested
work will only modify the ScriptPubKey data output
and adhere to the standard transaction data structure.

The purpose of the Bitcoin network is to record financial
transactions, not to hold random data. On the other hand,
programmers have devised a variety of methods based on
several standard scripts for encoding data in transactions.
The two kinds of scripts that we are interested in are the
NULL DATA script and the Pay To Pubkey Hash (P2PKH)
script. The programmer can store any kind of data where
the hashed public key should be in the first scheme (the
P2PKH script). This indicates that there are just 160 bits
available for data encoding. If the master hash was comput-
ed using SHA-1 rather than SHA-2, the CSP could implement
this scheme. However, because it negatively affects users’
RAM, this strategy raises issues with performance as well
as security (shorter hash values can result in attacks). The
inability to quickly separate the output from the typical
locking script is the root cause of the efficiency issues. The
standard script NULL DATA, which enables the pushing of
metadata onto the BC, is the foundation of the second ap-
proach. The concept operates by appending a NULL DATA
lock script to an extra output. The security and efficiency
issues of the first scheme are resolved by this script. With
Bitcoin Core version 0.12.0, 83 bytes of metadata can
be stored at most. Therefore, there is no need to save
information in the UXTO database, freeing up RAM. For a
transaction to be approved as a regular transaction, it can
only have one NULL DATA locking script.

We will be using this method since the suggested strategy
uses SHA-2 to produce master hash values.

Step 3 - Signing transaction and broadcasting to the Bitcoin
network: Spending from a multisig address requires the
client and CSP to sign the encrypted transaction using their
respective private keys. The encoded transaction is then
broadcast to the network by the CSP, where miners gather
it and incorporate it into blocks, which are then added to
the Bitcoin BC once the PoW is generated.

Ethereum
Externally Owned Accounts

Step 1: Configuring an Ethereum wallet Standard Ethe-
reum wallets provide a public Ethereum address for user
accounts in addition to storing private keys. To perform
an ETH transaction, each of the hired CSPs has to get a
normal wallet. Stated differently, the CSPs must be light
nodes. However, EOA does not support multi-signatures.

Step 2: Get the transaction ready and embed the master
hash.

13
Arora N & Parashar K

J Adv Res Cloud Comp Virtu Web Appl 2024; 7(1)

ISSN: 2454-8669

Step 3 - Signing transaction and broadcasting to Ethereum
network: A transaction must be signed by the initiator
account’s private key in order to be published on the
Ethereum network. The executed deal is delivered to the
local Ethereum node, which verifies that the signed trans-
action was actually signed by the address associated with
this account. The signed transaction is broadcast to every
peer in the network at the end of the process.

Smart Contract Accounts
Step 1 - Setting up ETH wallet: An Ethereum smart contract
that is used to store ETH that is owned by numerous parties
is called a multisig wallet. A certain number of shareholders
must authorise each transaction. The client will roll out four
shared smart wallets—one for each CSP—as part of the
proposed plan. Each shared smart wallet will have three
owner accounts: the CSP and two client accounts.

Applying the two-thirds rule allows a transaction to be
approved. ETH can be transmitted to this wallet, just like
any other Ethereum address, once the shared smart wallet
between the client and CSPs has been launched.

Step2 - Prepare raw transaction and embed master hash:
Transactions are used in the Ethereum network to install
smart contracts. Although the data included in the trans-
action is different from an EOA, the transaction structure
is the same.56 The bytecode and any encoded arguments
that a constructor may require should be included in the
input data. The CSP will use submit_Transaction to place
an ETH exchange order in order to deploy a multisig con-
tract to the Ethereum network. If there is enough ETH in
the wallet, this can be done. In response, CSP receives a
transaction_Id or hash code. This transaction_Id will be
made available to clients by the CSP so they can verify it.
The client can use the transaction_Id to verify the trans-
action data after receiving it from CSP.

Step 3 - Signing transaction and broadcasting to Ethereum
network: All accounts in an Ethereum network follow the
same procedure in sending out the transactions: signing
the transactions with the private key and broadcasting
transaction to local nodes which are responsible for validat-
ing and redistributing the transaction to their own peers.

Client Phase – Verification
It is now the client’s responsibility to confirm that the
values supplied by each CSP are the same after saving
the master hash in the BC. Since the platforms utilised in
this research vary in their verification requirements, this
procedure will be covered individually for the Bitcoin and
Ethereum models.

Bitcoin Verification
If the client chooses the Bitcoin platform, verifying the
master hash values is straightforward. This is because each

hired CSP has multisig wallets; in order to transact BTC, the
client must first consent. The client can view the stored
data value inside the transaction when they are required
to consent to a BTC transaction.

However, especially if the data is little, it makes no sense
for the client to keep checking it in this manner. There-
fore, the relevant block headers of the blocks containing
these transactions can be resorted to at any moment if
the client wishes to confirm the hash values. A four-byte
long timestamp in the block header shows when the block
was added to the BC.

Ethereum Verification
The Ethereum verification process varies based on the kind
of account being utilised. Every CSP for EOAs must transmit
the block header to the client for every transaction. This
enables the customer to monitor every transaction and
carry out validation. Regarding CAs, the multisig wallets
contain the block headers linked to the CSPs’ transactions
that the client can access. Therefore, the timestamp in-
formation in each block header can be used to conduct
the verification procedure. The ability of the CA- based
method to set up a shared wallet, which speeds up the
data verification procedure, makes it superior than EOA.

Result and Discussion
This section presents a theoretical assessment of the sug-
gested scheme’s performance and implementation costs
using each model connected to BC. These computations
are meant to identify the model with the best online per-
formance and the most viable financial solution. In our
computations, we do not account for the cost of hiring the
CSPs or the hash function computation time.

Cost Analysis
Bitcoin-Based Cost Analysis

The suggested plan will only rely on the smallest BTC trading
quantity feasible, taking into account network needs and
transaction fees, due to the extreme high price of BTC.

Early in 2020, information was released indicating that the
average transaction cost is 0.00001 BTC, or roughly $0.09.

Generally speaking, the minimum BTC trading amount
depends on the client’s method of obtaining BTC (such as
through a cryptocurrency exchange).

Assume for the purposes of argument that the client se-
lects a Luna that enables users to purchase Bitcoin for
0.75 dollars. The transaction costs are quite similar to the
amount of Bitcoin that is being held; eventually, the fee
for redeeming a new transaction will exceed the amount
that the client is transferring. Transactions with outputs
less than a predetermined size will automatically be de-
leted due to dust regulations. The effectiveness of our

14
Arora N & Parashar K
J Adv Res Cloud Comp Virtu Web Appl 2024; 7(1)

ISSN: 2454-8669

approach will suffer if any of these issues arise. To put it
more succinctly, it slows down the chaining of the trans-
action in a block, which can lead to notable delays in the
time intervals between established blocks for each CSP or
even the inability of one of the CSPs to block a transaction.

Ethereum-Based Cost Analysis
One way to store data in the data storage of a smart
contract is to store random data as a variable. The cost
of storing data depends on how many SSTORE operations
are performed. One SSTORE transaction—costing 20,000
gas—is needed to transform data from zero to non-zero
in order to store a master hash value of 32 bytes. As was
already established, a transporter must pay at least 21,000
petrol for each operation. The operation’s data payload,
which consists of the actual data and function signature,
results in additional gas usage. The process of creating
the smart contract itself also has an additional expense.

An estimated 0.010 USD will be spent overall (20, 000 +
21, 000 + 32 68 petrol). Preserving data as a log event is
the second choice. Numerous factors must be taken into
account in order to calculate cost.

First, each byte of data in a log topic costs an extra 8 gas,
and logged data is preserved in log topics at a cost of 375
gas. Using a log event to store 32 bytes of data is roughly
estimated to cost 0.005 USD (21, 000 + 375 + 32 8 gas).

Included are the fixed costs for both the data payload and
the carrier operation. Although more effective, storing and
altering data as a variable in a CA is less flexible because of
the Solidity language’s limitations on the kinds of values
and lengths.

Performance Analysis
The transaction price—the miner’s compensation for add-
ing the transaction in a block—and network congestion
determine how well the BC network performs. The profit
percentage must be raised to draw miners, which raises the
total cost, if the customer want to shorten the transaction’s
wait time. On the other hand, cutting costs will result in
longer wait times. When master hash values from various
CSPs take too long to appear in a block or appear in different
blocks at different times, it might cause synchronization
issues. Therefore, there is a trade-off between performance
and client- borne overhead costs. Moreover, extra tasks
unique to a certain strategy can influence performance.
While master hash values in an Ethereum transaction can
be embedded without the need for opcodes, CSPs embed
them in Bitcoin transactions utilizing the NULL DATA script.
On the other hand, storing the master hash with CA options
will necessitate numerous function calls.

Security Analysis

Confidentiality: Since the client should already be using HE

while storing data in the cloud, confidentiality is guaranteed
by default. The client must possess the associated private
key in order to decrypt the data, which is encrypted using
the public key. Consequently, client data can be accessed
using this cryptosystem without being revealed to unau-
thorized parties, such as the CSP.

Privacy: A CSP may be authorized by the customer to handle
data processing under the HE scheme. This is accomplished
by giving the CSP access to the encrypted data’s public key.
Client data is thereby protected against unauthorized or
false collection, usage, and/or disclosure assaults.

Integrity: The author postulates that computation attacks—
that is, computations not requested by the client—can be
carried out by a malevolent CSP.

There are a minimum of four CSPs according to the BFT
consensus principle. The master hash for each of these
CSPs’ databases must be generated and saved on the BC.
Clients will receive the block header for the purpose of
verification.

The malicious CSP will be identified when the client com-
pares the master hash values of all the CSPs, since its hash
value will be different from everyone else’s. Client data is
therefore not altered or removed in an illegal or covert way.

Implementation Analysis and Future Work
Because it does not necessitate creating scripts to reengi-
neer the cloud structure or alter the architecture of CSP
processing, the concept is simple to implement. All that
needs to happen is for the CSP to carry out extra tasks. The
CSP database’s hash value is first calculated, and it is then
embedded within a BC transaction. Because a client can
hire as many CSPs as they want as long as there are at least
four, the suggested approach is also scalable. Moreover,
there is no need for consensus-building or communication
amongst the CSPs themselves under the suggested plan. As
a result, the suggested plan is free from issues caused by
erratic data and CSP desynchronization with the client. The
suggested system, in spite of its many benefits, is unable
to reveal which data records have been compromised or
altered. Our goal for future work is to put in place a fea-
ture that can identify the inaccurate data records in the
CSP database.

Conclusion
This article addresses cloud computing data breaches
and the cloud service provider’s all-encompassing juris-
diction over client data activities. We suggest a method
that strengthens the client’s capacity to safeguard info.
The suggested method uses homomorphic encryption to
protect the privacy and confidentiality of data while it is
being computed by third parties.

A novel solution based on a distributed network of cloud

15
Arora N & Parashar K

J Adv Res Cloud Comp Virtu Web Appl 2024; 7(1)

ISSN: 2454-8669

service providers and Byzantine Fault Tolerance consensus
is developed to guarantee data integrity and identify data
tampering from the cloud service provider itself. The various
cloud service providers do not need to communicate di-
rectly with one another under the suggested arrangement.
Cloud service providers must compute the master hash
values of their databases and store them on blockchain
networks, such as Ethereum or Bitcoin, in order to give
the client immutable verification data. To accommodate
various client needs, we offered a quantitative study of
overhead expenses based on a number of time possibilities.
When routinely producing master hash verification values
every 30 minutes, embedding the master hash value as a
log event in the Ethereum network has proven to be the
least expensive of all the options (around $88 USD yearly).
However, the architecture where the master hash values
are included as a variable in an Ethereum transaction offers
the best online performance. Additionally, we examined
the security specifications and clarified the simplicity of
proposed work.

References
1. Agarwal V, Kaushal AK, Chouhan L. A survey on cloud

computing security issues and cryptographic tech-
niques. InSocial Networking and Computational Intel-
ligence: Proceedings of SCI-2018 2020 (pp. 119-134).
Springer Singapore.

2. Cloud Security Alliance. (2017). Security Guidance V4.0.
Available: https://cloudsecurityalliance.org/download/
security-guidance-v4/

3. CSA. (2020). Top Threats to Cloud Computing: Egre-
gious Eleven. Available: https://cloudsecurityalliance.
org/artifacts/top-threatsto-cloud-computing- egre-
gious-eleven/

4. R. Kissel, ‘‘Glossary of key information security terms,’’
Nat. Inst. Standards Technol., Gaithersburg, MD, USA,
Tech. Rep. NISTIR 7298, 2013, Revision 2. Available:
http://nvlpubs.nist.gov/ nistpubs/ir/2013/NIST.
IR.7298r2.pdf

5. Sullivan B, Tabet S, Bonver E, Furlong J, Orrin S, Uhley
P. Practices for secure development of cloud applica-
tions. SAFECode & Cloud Security Alliance. 2013 Dec.

6. Cloud Security Alliance. (2016). Top Threats Research.
[Online]. Available: https://cloudsecurityalliance.org/
group/top-threats/

7. Kumar R, Goyal R. On cloud security requirements,
threats, vulnerabilities and countermeasures: A survey.
Computer Science Review. 2019 Aug 1;33:1-48.

8. Phaphoom N, Wang X, Abrahamsson P. Foundations
and technological landscape of cloud computing. In-
ternational Scholarly Research Notices. 2013;2013.

9. Grobauer B, Walloschek T, Stocker E. Understanding
cloud computing vulnerabilities. IEEE Security & privacy.
2010 Jun 17;9(2):50-7.

10. Fernandes DA, Soares LF, Gomes JV, Freire MM, Inácio
PR. Security issues in cloud environments: a survey.
International journal of information security. 2014
Apr;13:113-70.

11. Modi C, Patel D, Borisaniya B, Patel A, Rajarajan M.
A survey on security issues and solutions at different
layers of Cloud computing. The journal of supercom-
puting. 2013 Feb;63:561-92.

12. Liu F, Tong J, Mao J, Bohn R, Messina J, Badger L, Leaf
D. NIST cloud computing reference architecture. NIST
special publication. 2011 Sep;500(2011):292.

13. Patil Madhubala R. Survey on security concerns in
Cloud computing. In2015 International Conference
on Green Computing and Internet Of Things (ICGCIoT)
2015 Oct 8 (pp. 1458-1462). IEEE.

14. Martin L. XTS: A mode of AES for encrypting hard disks.
IEEE Security & Privacy. 2010 May 24;8(3):68-9.

15. Lin HY, Tzeng WG. A secure erasure code-based cloud
storage system with secure data forwarding. IEEE
transactions on parallel and distributed systems. 2011
Oct 6;23(6):995-1003.

16. Ahmed M, Vu QH, Asal R, Al Muhairi H, Yeun CY. Light-
weight secure storage model with fault-tolerance in
cloud environment. Electronic Commerce Research.
2014 Nov;14:271-91.

17. Van Dijk M, Juels A, Oprea A, Rivest RL, Stefanov E,
Triandopoulos N. Hourglass schemes: how to prove that
cloud files are encrypted. InProceedings of the 2012
ACM conference on Computer and communications
security 2012 Oct 16 (pp. 265-280).

18. S. Eletriby, E. M. Mohamed, and H. S. Abdelkader,
‘‘Modern encryption techniques for cloud computing
randomness and performance testing,’’ in Proc. 3rd Int.
Conf. Commun. Inf. Technol. (ICCIT), 2012, pp. 800–805.

19. S. Zaineldeen and A. Ate, ‘‘Review of cryptography in
cloud computing,’’ Int. J. Comput. Sci. Mobile Comput.,
vol. 9, no. 3, pp. 211–220, Mar. 2020.

20. Mouhib, D. Ouadghiri, and N. Hassan, ‘‘Homomorphic
encryption as a service for outsourced images in mo-
bile cloud computing environment,’’ in Cryptography:
Breakthroughs in Research and Practice. Hershey, PA,
USA: IGI Global, 2020, pp. 316–330, doi: 10.4018/978-
1-7998-1763- 5.ch019.

21. P. Awasthi, S. Mittal, S. Mukherjee, and T. Limbasiya,
‘‘A protected cloud computation algorithm using ho-
momorphic encryption for preserving data integrity,’’
in Recent Findings in Intelligent Computing Techniques
(Advances in Intelligent Systems and Computing).
Singapore: Springer, 2019, p. 707, doi: 10.1007/978-
981-10- 8639-7_53.

22. Alanwar, Y. Shoukry, S. Chakraborty, P. Martin, P.
Tabuada, and M. Srivastava, ‘‘PrOLoc: Resilient localiza-
tion with private observers using partial homomorphic

https://cloudsecurityalliance.org/download/security-guidance-v4/
https://cloudsecurityalliance.org/download/security-guidance-v4/
https://cloudsecurityalliance.org/artifacts/top-threatsto-cloud-computing-egregious-eleven/
https://cloudsecurityalliance.org/artifacts/top-threatsto-cloud-computing-egregious-eleven/
https://cloudsecurityalliance.org/artifacts/top-threatsto-cloud-computing-egregious-eleven/
https://cloudsecurityalliance.org/artifacts/top-threatsto-cloud-computing-egregious-eleven/
http://nvlpubs.nist.gov/
https://cloudsecurityalliance.org/group/top-threats/
https://cloudsecurityalliance.org/group/top-threats/

16
Arora N & Parashar K
J Adv Res Cloud Comp Virtu Web Appl 2024; 7(1)

ISSN: 2454-8669

encryption,’’ in Proc. 16th ACM/IEEE Int. Conf. Inf.
Process. Sensor Netw. (IPSN), Apr. 2017, pp. 41–52,
doi: 10.1145/3055031.3055080.

23. P. K. Sharma, M.-Y. Chen, and J. H. Park, ‘‘A software
defined fog node based distributed blockchain cloud
architecture for IoT,’’ IEEE Access, vol. 6, pp. 115–124,
2018, doi: 10.1109/ACCESS.2017.2757955.

24. K. Gai, Y. Wu, L. Zhu, L. Xu, and Y. Zhang, ‘‘Permis-
sioned blockchain and edge computing empowered
privacy-preserving smart grid networks,’’ IEEE Internet
Things J., vol. 6, no. 5, pp. 7992–8004, Oct. 2019, doi:
10.1109/JIOT.2019.2904303.

25. X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat,
and L. Njilla, ‘‘ProvChain: A blockchain-based data
provenance architecture in cloud environment with
enhanced privacy and availability,’’ in Proc. 17th IEEE/
ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID),
May 2017, pp. 468–477, doi: 10.1109/CCGRID.2017.8.

26. R. L. Rivest, L. Adleman, and M. L. Dertouzos, ‘‘On data
banks and privacy homomorphisms,’’ Found. Secure
Comput., vol. 4, no. 11, pp. 169–180, 1978.

27. S. Goldwasser and S. Micali, ‘‘Probabilistic encryption
& amp; how to play mental poker keeping secret all
partial information,’’ in Proc. 14th Annu. ACM Symp.
Theory Comput., 1982, pp. 365–377.

28. P. Paillier, ‘‘Public-key cryptosystems based on com-
posite degree residuosity classes,’’ in Proc. Int. Conf.
Theory Appl. Cryptograph. Techn. Berlin, Germany:
Springer, 1999, pp. 223–238.

29. Boneh, E. Goh, and K. Nissim, ‘‘Evaluating 2-DNF
formulas on ciphertexts,’’ in Theory Cryptography.
Berlin, Germany: Springer, 2005, pp. 325–341, doi:
10.1007/978-3-540-30576-7_18.

30. C. Gentry, ‘‘A fully homomorphic encryption scheme,’’
Ph.D. dissertation, Dept. Comput. Sci., Stanford Univ.,
Stanford, CA, USA, 2009.

