
Research Article

Copyright (c) 2018 Journal of Advanced Research in Cloud Computing, Virtualization and Web Applications

Abstract
Object-oriented software depends upon the successful integration of classes and object. When the classes
are integrated to each other, there could be chance to arise several faults. The method in the area of research
is SCOTEM (State Collaboration Test Model), based on UML collaboration and State chart diagrams. This
is a state-based approach which generates the various test path based on the coverage criteria Selected
and hence includes all the objects states in collaboration.

In this paper the analysis of SCOTEM model is done for a case study using a prototype tool developed in
C language. Various Mutants are analyzed by using this prototype tool. The results show that the related
technique effectively detects all the seeded faults when complying with the most demanding adequacy
criterion and still achieves reasonably good results for less expensive adequacy criteria.

Keywords: SCOTEM, M(Message), Ob(Object)

Corresponding Author: Deepak Nagar, IIMT group of colleges, India.
E-mail Id: deepg.ngr@gmail.com
Orcid Id: https://orcid.org/0000-0003-3642-983X
How to cite this article: Nagar D, Kumar J. State Oriented Software System Testing for Object Oriented Applications using UML
Diagrams. J Adv Res Cloud Comp Virtu Web Appl 2018; 1(2): 19-22.

Journal of Advanced Research in Cloud Computing,
Virtualization and Web Applications

Volume 1, Issue 2 - 2018, Pg. No. 19-22
Peer Reviewed Journal

State Oriented Software System Testing for
Object Oriented Applications using

UML Diagrams
Deepak Nagar1, Jitendra Kumar2

1,2Assistant Professor, IIMT College of Management, Uttar Pradesh, India.

Introduction
Five distinct level of object oriented testing.[2]

•	 A method,
•	 Message quiescence,
•	 Event quiescence,
•	 Thread testing,
•	 Thread Interaction Testing

The communicative nature of objects[2]

As shown in fig 1 the interaction among the objects in
object-oriented program may be between the methods
within the same object or between the methods of two
different objects show in integration testing the emphasis
is on object-oriented interaction[1] rather than in side the
objects.

State Collaboration Test Model (SCOTEM)[1]

The SCOTEM is an intermediate test model which is used
for automatically generate test specifications for class

Figure 1.Message communication[2]

integration testing. The Various phases in SCOTEM is given
below.

mailto:deepg.ngr@gmail.com

20
Nagar D et al.
J. Adv. Res. Cloud Comp. Virtu. Web. Appl. 2018; 1(2)

•	 SCOTEM Generation: An intermediate test model,
called SCOTEM (State Collaboration Test Model) is
constructed from a UML collaboration diagram and
the corresponding state charts.

•	 Test Paths Generation: Test paths are generated from
the SCOTEM based on multiple possible alternative
coverage criteria.

•	 Test Execution: All specified test paths are executed by
using manually-generated test data and an execution
log is created, which records object states before and
after execution of each message in a test path [3].
The object states are determined using state invariant
assertions.

•	 Result Evaluation: The object states in the execution
log are compared with the expected object states in
the test paths generated from SCOTEM. This means
that these test paths also contain oracle information
in the form of expected states of the objects. If any
state of any object after execution of a test path is not
in the required resultant state, then the corresponding
test case is considered to have failed.

Where the short words means the following

CD=Collaboration Diagram
SC=State Chart
SG=Scotem Generator
TPG=Test Path Generator
CC=Coverage Criteria
TP=Test path
SI=State Invariant
TD=Test Data
TE=Test Executor
P/f Res=Pass/Fail Result

The SCOTEM is a particular graph structure: A vertex
corresponds to an instance of a class (in a particular state)
participating in the collaboration.

A Modal Class can receive a message in more than one
state and exhibit distinct behavior for the same message in
different states.[7] To capture this characteristic, for modal
classes, the SCOTEM contains multiple vertices, where
each vertex corresponds to an instance of the class in a
distinct abstract state (corresponding to states defined in
state charts). At the same time, a non-modal class only
requires a single vertex in the SCOTEM graph.

SCOTEM test model’s edge can be segregated in two types:
message and transition edges. A message edge reflects a call
action between two objects, and a transition edge reflects
a state-transition of an objection receiving a message. Each
message edge may also contain a condition or iteration.
Every message can be a reason of a state transition to occur.

A transition edge connects two vertices of the same class.
State charts may have multiple transitions to distinct states

Sr.
No.

Class Method Instance
variable

Moda
lity

Lines
of

code
1 Login

User
1 2 Non

Model
29

2 Display
Question

2 2 Non
Model

36

3 Log 1 2 Modal 27
4 Result 1 2 Modal 28
5 Grade

Obtained
1 3 Modal 32

Table 1.Classes under the Test

for the same operation. Hence, there can be several transition
edges (representing a conditional state transition) for the
same message edge in SCOTEM. Each of these transitions
is usually controlled by mutually exclusive scenario (to
prevent non-determinism). The internal representation of
a vertex holds the class name and state of the instance it
corresponds to. Message edges are modeled in the SCOTEM
by attributes of a message including message sequence
number, associated operation, receiver object, and the
sender object.[4] The transition edges are modeled by the
attributes of a transition which includes sequence number,
associated operation, accepting state and sending state.

Mutants for Integration Testing[6]

The following mutant operators are being used while
performing integration testing

•	 Replace Return Statement
•	 Remove Function Call
•	 Condition Missing
•	 Loop Error Set
•	 Alter Condition Operator
•	 Guard Condition Violated
•	 Missing Called Function
•	 Target State as Source State
•	 Wrong Calling State
•	 Conflicting State Operator

Case Study
In order to validate system testing approach using the
prototype tool developed[6], we consider here a simple
example of Student Evaluation System for case study
through out the work.

The implementation of Student Evaluation System that
we consider in our example evaluates the grade of the
students. The application presents generates questions,
one after the other, to the students. Students are given lot
of time to solve each problem. A detailed performance
log is maintained for each student. The classes under the
test are shown in Table. 1.

The collaboration diagram of the system is shown below
in the diagram.

21
Nagar D et al.

J. Adv. Res. Cloud Comp. Virtu. Web. Appl. 2018; 1(2)

1: Start (): Void
1.1: Question (int 1): Void
1.1.1: Set Log (Int): Void
1.1.2: Set Result (int): Void
1.1.2.1:Set Grade (int count)

 Figure 2.Collaboration Diagram of System

Figure 3.StateChart Diagram of Class Grade

Figure 4.StateChart Diagram of Class Log

Figure 5.StateChart Diagram of Class Result

Figure 6.StateChart Diagram of Class Login

The following are flattened state diagram of different
classes. All the UML diagrams are made in tool Poseidon4.5.

Algorithm
The following is algorithm is used for creating graphical
structure of SCOTEM model

Files used are
SCOTT.txt: is used to give input to this algo.

FILE pointer variables are
in :used to point the file SCOTT.txt

Procedure and subprocedures used are
:procedure void xstrcpy(char *d,char *s)
:procedure int search(char *seq_no)
:procedure void storeobj(struct node **p,char *obj)
:procedure void storestate(struct node **p,char *st)
:procedure void storetransition(struct node **p,char
*guard,char *source,char *target)
:procedure struct node * storemsg(char *seq_no)
:procedure void createpath(struct node *p)
:procedure void store(struct node **p,char *seq)
:procedure void print(struct node *p)
:procedure void deletestate(struct node *h,char *state_
name)
:procedure int getkey()
:procedure void push(struct stack **top,struct node *save)
:procedure struct node* pop(struct stack **top)
:procedure void print_stack()

Variables used are
name : is data member of structure state used to store
name of state
*next : is data member of structure state used to point
next state
cond : is used for condition of transition
source : is used for transition source
target : is used for transition target
feasible: is data member of structure transition to check
transition from source to target is feasible or not
*next : is data member of structure transition pointer to
next transition
*current:is variable of structure node pointing to first
node

Algorithm for creating SCOTEM graph void
scotem(struct node *ptr)
*ptr=NULL
store(&ptr,”1”)
head=ptr
deletestate(head,”Hidden”)
createpath(head)
d=DETECT
initgraph(&d,&g,”c:\\tc\\bgi”)
void scotem(struct node*)
l=strlen(“1”)*8+20

22
Nagar D et al.
J. Adv. Res. Cloud Comp. Virtu. Web. Appl. 2018; 1(2)

.maxx=getmaxx()
maxy=getmaxy()
 midx=maxx/2
 midy=maxy/2
 Initialize the X and Y coordinates of all states and
iteratives
 *current=head
 instruction()
 getkey()
 scotem(current)
 while(1)
do select case(getkey())
 case 80:exit(0)
 case 72:if(top==NULL)
 then break
 current=pop(&top)
 scotem(current)
 case 75:if(current->left!=NULL)
then push(&top,current)
 current=current->left
 scotem(current)
 case 77:if(current->right!=NULL)
 then push(&top,current)
 current=current->right
 scotem(current)
closegraph()

Algorithm for xstrcpy
void xstrcpy(char *d,char *s)
 while (*s!=’\n’ && *s!=’\0’)
 do *d=*s
 s++
 d++
 *d=’\0’

Algorithm for search
int search(char *seq_no)
char *seq=(char*)malloc(sizeof(char)*strlen(seq_no)+3);
strcpy(seq,”’”);
strcat(seq,seq_no);
strcat(seq,”:”);
if((in=fopen(“SCOTT.txt”,”r”))==NULL)
then perror(“Unable to open file: “);
exit(0); while(fgets(string,250,in)!=NULL)

Conclusion
This study represents here used to validate the already
available approaches by the prototype tool we developed.
We also implemented here the several path coverage
criteria to validate the approach.Once we redirect about
the future work in this model then we must discuss the
test result generated by this prototype tool for system
testing. We can also use this technique to test any SOA
kind of application.

References
1. Shaukat Ali, Lionel C.Briand, Rehman MJ, et al. A State

based approach to integration testing based on UML
models. Journal Information and Software Technology
2007; 49(11&12): 1087-1106.

2. Zhao R, Lin L. An UML State chart Diagram-Based
MM-Path Generation Approach for Object-Oriented
Integration Testing. World Academy of Science,
Engineering and Technology, International Journal of
Computer and Systems Engineering 2008; 2(10): 3470-5.

3. labiche Y, P.thevenod-Fosse, Waeselynck H et al.Testing
Levels for Object-oriented Software. 2000 in ICSE, 2300
1-58113-206-9/00/06.

4. Bruegge B, Dutoit AH. Object-Oriented Software
Engineering: Using UML, Patterns and Java, Prentice
Hall, Second Edition, 2003.

5. Baldini A, Benso A, Prinetto P. System-level Functional
Testing from UML Specifications in End-of-production
Industrial Environments. International Journal of
Software Tools Technology and Transfer 2004; 7(4):
326-340.

6. Briand L, Labiche Y, Wang Y. An Investigation of Graph-
Based Class Integration Test Order Strategies, IEEE
Transactions on Software Engineering 2003; 29(6):
594 - 607.

7. Briand LC, Di Penta M, Labiche Y. Assessing and
Improving State-Based Class Testing: A Series of
Experiments. IEEE Transactions on Software Engineering
2004; 30(11): 770-79.

Date of Submission: 2018-12-13

Date of Acceptance: 2018-12-20

