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Abstract
The topic of grid generation has become a field on its own in the increasingly vast field of technology. 
Structured grid methods take their name from the fact that the grid is laid out in a regular repeating pattern 
called a block. These types of grids utilize quadrilateral elements in 2D and hexahedral elements in 3D in 
a computationally rectangular array. Although the element topology is fixed, the grid can be shaped to 
be body fitted through stretching and twisting of the block. Really good structured grid generators utilize 
sophisticated elliptic equations to automatically optimize the shape of the mesh for orthogonality and 
uniformity.
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Introduction
Below it is described a set of algebraic and differential 
methods that makes up the bulk of the available methods

Algebraic Methods
Algebraic methods are based on coordinate transformation 
equations in a physical domain. In their most simple form 
they are Lagrange and Hermite transformations (are 
called shearing transformations). Some methods are 
based on interpolation schemes in multi-dimensions. 
Transfinite interpolation (Eriksson, 1982) and multi-surface 
transformation (Eiseman, 1985) produce good grids for 
closed domains. Integration of the methods with additional 
control on the boundary values and elliptic smoothing (see 
further down) give efficient grid generation systems (for 
example ICEM/CFD, GridPro) These methods in their most 
developed form allow some control on the values of the 
derivatives at the boundary. 

Elliptic Methods
Elliptic methods are based on the solution of elliptic partial 
differential equations with some conditions (called forcing 
terms) to force point bunching. The problem is formulated 
via a set of Poisson equations (Thompson, 1977) with 
forcing terms usually defined by the Thomas-Middlecoff 
terms (Thomas-Middlecoff, 1982), or by other appropriate 

control functions (Sorenson, 1995). 12 The solution of the 
system is iterative, for example with a Successive Over 
Relaxation (SOR) method. For large grids the computing time 
is considerable. Elliptic systems produce very smooth grids 
(sometimes too smooth) and they can be used to smooth 
out metric discontinuities in the transfinite interpolation 
systems (for this purpose also a Laplace smoother will 
suffice).

Hyperbolic Methods
Hyperbolic methods are based on the solution of partial 
differential equations of hyperbolic type that are solved 
marching outward from the domain boundaries. The idea 
of using hyperbolic PDEs is very effective for external flows 
where the wall boundaries (airfoil, wing, wing-body, etc.) 
are well defined, whereas the far field boundary is left 
arbitrary. This situation also eliminates the need to specify 
point distribution on some of the edges of the flow domain, 
and makes it handier than for example the transfinite 
interpolation methods. In its basic formulation (Steger- 
Chaussee, 1980) the hyperbolic grid generator is based on 
a condition of orthogonal, and a condition on the cell area. 
The method can be integrated with grid line smoothing 
and orthogonal checks.

Adaptive Grids
All the methods described above make use of some 
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empirical knowledge about the form of the solution of 
the PDEs. This knowledge makes us force many points in 
regions of large field gradients (for ex. boundary layers). 
Better solutions could be obtained if a first guess grid could 
be adapted in a time marching numerical scheme to follow 
exactly the evolution of the field gradients (a particular 
difficult problem is the position of the shock wave in a 
transonic flow).

Deep Insight of Grid
Grid is a discrete Representation of the domain 

Two views can be taken:

1.  Mold a given two-dimensional domain in to a rectangle 
(and three-dimensional domain in to a box) by a suitable 
affine transformation

Find two functions f and g such that ξ = f (x, y) and η = g (x, y).

• Draw lines corresponding to constant values of ξ = i 
Δξ = i and η = j Δη = j

             for i = 1 to i max and j = 1 to j max in (x, y) plane.

• Intersection of these points gives (a) grid points (i, j) 
and also (b) quadrilateral cells.

2.  Fill a given domain with simple shapes such as triangles 
(say) so that the given domain is fully covered.

Thus Grid (in 2D) is defined by 

A set of discrete points and a set of cells (usually quadrilaterals 
or triangles) Collection of neighboring discrete points 
forming a set of cells and Lines extending connecting the 
discrete points, i.e. edges of cells. If the edges span the 
across the domain and join the same number of grid points 
they are called grid lines.

Grid also helps in representing a field in discrete form

• Represents continuous variables only at finite number 
of points

• Helps in converting PDE to FDE, FVE or FEE
• Solution of these equations gives field at discrete 

points.

Representation of space and field can be done in two ways.

Finite Difference method (FDM): 

• Field assigned to grid points only
• Variation of the field in between the points is not 

explicitly defined 
• Resulting equations satisfy only at grid points

Finite Element Method (FEM): 

• Field assigned to grid points and is well as some 
intermediate points

• Variation of the field in between the points is explicitly 
defined

• Resulting equations satisfy in overall sense

Finite Volume Method:

• Field assigned to cells and it is assumed to be constant 
in a cell

• Resulting equations is conservation in every cell

Importance of Grid Generation
The topic of grid generation has become a field on its 
own in the increasingly vast field of computational fluid 
dynamics. Some general considerations regarding suitable 
methods and their role in computational fluid dynamics 
are the following:

• Almost any method works on a good grid, whereas the 
bad methods only work on good grids. 

• If one had enough resolution (e.g. enough points), 
then the grid quality would be of minor importance, 

• Domain here is space between two circles. The simple 
shape chosen to fill the space is triangle.

• Triangles collectively cover the complete space, 
triangles do not intersect each other
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provided that some basic requirements are satisfied. If 
the grid is necessarily coarse, then its quality becomes 
essential.

• A good grid can accelerate the convergence of the 
solution, while a bad grid can even lead to a divergent 
iteration history.

Structured Grid Generation Methods
Structured grid methods take their name from the fact 
that the grid is laid out in a regular repeating pattern 
called a block. These types of grids utilize quadrilateral 
elements in 2D and hexahedral elements in 3D in a 
computationally rectangular array. Although the element 
topology is fixed, the grid can be shaped to be body fitted 
through stretching and twisting of the block. Really good 
structured grid generators utilize sophisticated elliptic 
equations to automatically optimize the shape of the mesh 
for orthogonality and uniformity.

Typical 3D and 2D structured mesh
Structured meshes lead to very efficient numerical methods, 
High quality sufficiently simple geometries, large grid control 
when high anisotropy is required, Multi-Block approach 
allows for realistic geometries.

Two Dimensional Structured Grids
Structured grids are generated by a mapping the Physical 
Domain to a Computational Domain 2-D domain, say (x y 
plane or physical plane) or a surface in (x, y, z) space can be 
mapped to on a rectangle in say (ξ, η) plane (computational 
domain).

Mathematically ξ= F (x, y), η= G (x, y)   or x = H (ξ, η), y = I 
(ξ, η) this mapping to be one to one mapping

The Domain acquired Rectangular topology; i.e.

The boundary of the domain got divided in to four separate 
parts each getting mapped to sides of  rectangle in plane

• Four points on the boundary got explicitly mapped 
to four vertices

• If m lines are drawn along ξ axis and n lines are drawn 
along η axis, there will be m x n lines in   the domain

• The intersection of these lines will generate grid points. 
These lines also divide the domain in to cells (m-1) x 
(n-1) number

Thus a structured grid gets generated automatically if (F 
and G) or (H and I) are found out.

Numerical method where in discrete points (Xi j, Yi j) for i = 
1 to m and j = 1 to n defined as

Xi j = H ( ξ i j, ηij ) for i = 1 to m and j = 1 to n

Yi j = I (ξ i j, η i j)   with ξ i  j, η i j are equally spaced . This 
Procedure is called automatic numerical grid generation. 

Concepts of Topology:
Topology of Grids in Doubly Connected Region:
O-Topology:

• Points on both boundaries is the same 
• Flow gets resolved better on the internal surface
• Good for Simulation of in viscid flows
• Require Periodic boundary conditions 

C-Topology

• No. of Points on the outer boundary is equal to the 
number of grid points on the airfoil + wake.

• Good for Simulation of viscous flows
• Requires a Special Provision for implementation of 

Boundary Conditions.
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Topology of Grids in Multiple Connected Regions
H-Topology

• No. of Points on the object immersed in the domain 
is much less 

• Easy to generate 
• Good for Simulation of cascade flows 
• Flow near Leading Edge does not get Resolved
• Boundary condition is used in the Domain 
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