
Research Article

Journal of Engineering Design and Analysis (ISSN: 2582-5607)
Copyright (c) 2020: Advanced Research Publications

I N F O A B S T R A C T

This work attempts to provide a solution to address the challenges in
fetch and represent of large set of records at client-side application.
In general user interfaces represent search results in paginated data
tables and use just-in-time asynchronous calls to service end points to
get the page content. There are several alternative or complementary
practices to support client-side pagination, e.g. Indexing of data through
specialized indexing tools, cache systems, leveraging suitable algorithms
for optimized data retrieval from storage etc. A well-crafted strategy
for service calls and management of client-side resources, is essential
for achieving reasonable system performance and user experience.

Keywords: Pagination, Client-Side Pagination, Dynamic Pagination,
Pagination for Large Data, Scalable Pagination

E-mail Id:
sbagchi.research@gmail.com
How to cite this article:
Bagchi S. Client-Side Pagination for Large Dataset.
J Engr Desg Anal 2020; 3(2): 8-12.

Date of Submission: 2020-11-15
Date of Acceptance: 2020-11-27

Client-Side Pagination for Large Dataset
Saikat Bagchi
Infosys Limited, Bhubaneswar, Odisha, India.

Introduction
Enterprise systems generally process and represent large
amount of information and data with intrinsic principles and
objective to address stated business goals. System designers
of any interactiv e system often face two key challenges
retrieval of context specific data and representationto
system users. The challenges become acute when large set
of data need to be presented to users. A typical instance
of this issue is observed in implementing search functions
in applications. Designers adopt pagination techniques to
provide an organized, bucketed display of subset of search
results at client-side interfaces. Asynchronous techniques
like AJAX,1 help in adopting hybrid solution using both
client-side and server-side pagination. While client-side
pagination is generally appropriate for low volume of
data, server-side pagination is apt for large data set. It
is also adopted when there are accessibility restrictions
for usage of client side scripting (e.g. java-script). Correct
implementation of pagination is always challenging and
demands good amount of effort and analysis by designers.2

Adoption of a hybrid solution for pagination, proves to
be more useful in handling large data set. This approach
cuts through all layers of a system to apply optimization
techniques. Offset or value (cursor) based methods3 may

be used for retrieving data from database; placement of a
well formed cache layer assists in improvement of service
response time in delivering the paginated data to client,
butonly server- side optimization is not enough for meeting
the performance and scale related challenges. A well-crafted
strategy, for service calls and optimum usage of client-side
resources, isessential for achieving reasonable system
performance and user experience. This work proposes
one such client-side solution for pagination of large set
of records.

Related Work
Paginationis a real challenge in client-side application that
wants to present large set of data to users. This problem is
mostly relevant for systems that display search results to
users. A number of third party libraries (both opensource
and commercial) are available in market for providing
out-of-the-box solution for client-side pagination, but it
is often observed that these libraries might not help in
handling large dataset efficiently. Two of the frequently
followed approaches,used for getting data from server-side
applications, are: a) individual service call for fetching each
page content, b) service call to fetch content for multiple
pages in batch. Cao J. et al.5 have given a comparative
analysis of pagination algorithms based on large data sets

Journal of Engineering Design and Analysis
Volume 3, Issue 2 - 2020, Pg. No. 8-12

Peer Reviewed Journal

Bagchi S
J. Engr. Desg. Anal. 2020; 3(2)

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

ISSN: 2582-56079

- server-side pagination algorithms used in data retrieval
from database storage. Most of the available articles and
analysis works, related to pagination, are mainly focused
around the client-side best practices for representation
of paginated view to users.6-10 There have been some
work on identification of disadvantages of pagination in.11
There are discussions and analysis around pagination and
performance issues at client-side pagination.12,13 explains
the data paging technique using backendless tool, which
uses offset based approach for data retrieval at server-side.
The scope of above mentioned study and analysis were
mostly around the client-side representation and server-
side data retrieval. There needs to be a comprehensive
approach for handling challenges for client-side pagination
of large dataset.

Proposed Solution for Client- Sidepagination
of Large Data in Search Result
Assumptions

This work assumes that the underlying system is following
client-server principles; server-side data retrievalis using
offset/ value-based methods; service api end points are in
place for providing data and an asynchronous methodology
is adopted at client-side for interaction with service end
points.Client-side cache is used for temporary storage of
data in pages.

Client-side Configuration

Activity Flow

Figure 1, shows an activity flow of the proposed approach.

When a user performs search for any key word, a service
api call resolves the total count of qualifying records in
database. If the total number of qualifying records, is within
the cache limit, C, service calls are made to fetch and load
all records into client-side cache. On the other hand, if
the total number of records is more than cache capacity,
then C number of records are fetched from service, stored
into cache and grouped as sequenced pages. Service calls
are asynchronously triggered when a user navigates to
pre-identified pages. Service response data are stored in
forward/ backward buffers in cache based on the direction of
navigation path. The cache content enables the application
to provide a seamless experience in navigation of pages
in pagination table. This is explained in more detail with
example in next section. When a user navigates through
pages, the buffered pages are adjusted dynamically.

During forward navigation, service calls load pages into
cache in forward buffer and removes proportionate data
from backward buffer to maintain volume within cache
threshold. Exactly reverse operation takes place during
backward navigation i.e. service calls load data into
backward buffer and removes proportionate data from
forward buffer.

Cache content can be categorized as forward buffer, visible
pages, backward buffer. The visible pages are displayed
to user in pagination table (e.g. clickable page links in
pagination table in web interface), so that a user can access
the page content directly. The forward buffer contains pages
that a user can navigate forward in pagination table andthe
backward buffer contains pages that can benavigated
backward. This scheme is depicted in Figure 2.

Figure 1.Activity flow of proposed solution

Figure 2.Cache content category

Table 1.Configuration Parameters

Configuration
Parameter Description

Cache capacity

Maximum capacity of data (record
set/ pages) that can be stored and
maintainedin local cache (browser
cache or any client-side in-memory

cache)

Data size in
Service response

Number of records requested from
service end point in each service call

Pages in
pagination table

Number of pages displayed in
paginated data table to user

Page size in
pagination table

Number of records displayed per
page in paginated data table

Description

ISSN: 2582-5607 10

Bagchi S
J. Engr. Desg. Anal. 2020; 3(2)

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

Mathematical Notations and System Parameters

Following parameters are used in upcoming sections for
explaining system functions:

Cache capacity, Crec

Record count in service response, Srec

Record count per page in pagination table, Prec

Count of pages displayed to user, Ppage

Pages fetched per service call, Spage = Srec/ Prec

Max. pages stored in cache, Cpage = Crec/ Prec

Service calls for initial cache-load = Cpage/ Spage

Pages in forward & backward buffers = (Cpage - Ppage)

Service Calls in Forward Navigation

After initial cache load, system would identify the page
positions, where service calls would be made during forward
navigation and backward navigation.Service call positions
during forward navigation can be computed using following
scheme:

Once a user performs search function, aset of service calls
asynchronously fill the client-side cache. Number of service
calls required, Ns = Cpage/ Spage

After initial data load into cache, Spage number of pages at
beginning of cached pages would be visible to user and
forward buffer would contain, Nf = (Cpage - Spage) number
of pages.

As user navigates forward to nth page, where Spage < n Nf
the backward buffer would contain (n - Spage) pages, the
visible part would have Spage and the forward buffer would
contain (Cpage - n) pages.

When the number of pages in forward buffer drops below
Spage, a service call is triggered to fetch Spage number of pages
from service. Since cache capacity is fixed, so Spage number
of pages are unloaded from backward buffer.

As forward navigation continues, service calls are triggered
at every Spage intervals, till Ptotal - thpageis fetched.

Number of residual pages that are yet to be fetched after
initial cache load = (Ptotal - Cpage)

Number of service calls needed to fetch the residual pages
= (Ptotal - Cpage) /

Let’s denote A = (Cpage Spage) + 1 andB = (Ptotal -2 Spage)

Total number of service calls required for forward navigation
of all records, Ns = (B - A)/ Spage

The sequence of page positions would be:

{A+(ꭓ × Spage) : ꭓϵ {0,1.....Ns}}

Service Calls in Backward Navigation

When forward navigations result in removal of cached
pages from backward buffer, backward navigations trigger
service calls at specific page positions to repopulate the
relevant pages to backward buffer and remove pages from
forward buffer.

The sequence of page positions for service call would be:

{ꭓ × Spage: ꭓϵ {(Ns-1), (Ns-2),, 3,2}}

Ellaboration with Example

Let’s assume a user performs a search in web application
which provides search result depicted in Figure 3. The
paginated Table shows 5, pages at a time and there are
311 pages in total. It shows the forward and backward
navigation buttons at bottom-right corner.

Figure 3.Sample paginated data
Configuration Parameters

Suppose, the system (client-side) is configured with
following parameter values:

Cache capacity, Crec = 2500

Record count in service response, Srec = 500

Record count per page in pagination table, Prec = 50

Count of pages displayed to user at a time, Ppage = 5

Following configuration parameters are derived from above
parameters:

Pages fetched per service call, Spage = Srec/Prec

 = 500/50

 = 10

Max. pages stored in cache, Cpage
 = Crec/ Prec

 = 2500/50

 = 50

Service calls for initial cache-load = Cpage/ Spage

 = (50/10)

 = 5

Bagchi S
J. Engr. Desg. Anal. 2020; 3(2)

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

ISSN: 2582-560711

Pages stored in buffers (forward + backward) = (Cpage - Ppage)

 = (50 5)

 = 45

Suppose, total qualifying recordsfor a given search condition
= 15520, then page count in pagination table would be,

Ptotal = 15520/ Prec

 = 15520/ 50

 = 311.

Analysis on Service Calls and States of Paginated
Data

Forward Navigation

For above mentioned example the states of the paginated
data and cache buffer content would be as below. Figure
4 depicts this in detail:

Afterinitial data fetch by client when user performs search:

Visible pages to user = 1st to 5th

Pages in forward buffer = 6th to 50th

Pages in backward buffer = 0

When user navigates to (Cpage Spage) = 40th

Page the state would be as following:

Visible pages to user = 36th to 40th

Pages in forward buffer = 41st to 50th

Pages in backward buffer = 1st to 35th

When user navigates to (Cpage - Spage) + 1 = (50 - 10) + 1 =
41st page, a service call is triggered to load next Spage = 10
pages. At the same time Spage = 10 pages are removed from
backward buffer to avoid cache overflow. The state of the
system would be as below:

Visible pages to user = 37th to 41st

Pages in forward buffer = 42nd to 60th

Pages in backward buffer = 11th to 36th

For identifying the pages where service calls are triggered,
let’s use the derived parmeters from Section C.3.

A= (Cpage - Spage) + 1 = (50 - 10) + 1 = 41

B = (Ptotal - 2 × Spage) = (311 - 2 × 10) = 291

Ns = (B - A)/ Spage = (291 41)/ 10c = 25

The sequence of page positions for service call would be as
follows (from 2nd service call onwards after user performs
search):

{A + (ꭓ × Spage): xϵ {0,1.....Ns}}

= [41, {41 + (1 10)}, {41 + (2 10)}, {41 + (3 × 10)}..., {41
+(2.5 × 10)}]

= [41, 51, 61, 71....., 291]

Figure 5.Pagination table, cache states and page
positions for service call during backward navigation

Figure 4.Pagination table, cache states and page
positions for service call during forward navigation

Backward Navigation

Once the user has performed enough forward navigation
so that the cache contents are updated (i.e. service calls
> 2 have already taken place) the backward navigation
starts triggering service calls at specific pages to update
cache content.

When user navigates backward to 30th page, the state
becomes as below:

ISSN: 2582-5607 12

Bagchi S
J. Engr. Desg. Anal. 2020; 3(2)

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

Visible pages to user = 30th to 34th

Pages in forward buffer = 35th to 60th

Pages in backward buffer = 11th to 29th

When user navigates back to 20thpage, the state becomes
as below:

Visible pages to user = 20th to 24th

Pages in forward buffer = 25th to 50th

Pages in backward buffer = 1st to 19th

Figure 5, shows the corresponding details.

{ꭓ × Spage: ꭓϵ {(Ns-1), (Ns-2),, 3,2}}

= [(25-1) × 10, (25-2) × 10,...,3 × 10, 2 × 10]

= [240, 230,..., 30, 20]

Benefits

The proposed solution has both primary and auxiliary
benefits. It helps in addressing the challenges associated
with client-side pagination requirement for large set of
search results.

The number of service calls required with this approach is
low compared to any alternative approach. Extensive use
of configurable parameters provide a complete control to
system owners/ administrators on performance tradeoffs.

Client-side cache, with dynamic split of forward buffer,
backward buffer and visible window of data, helps in faster
page navigation.

Pre-load strategy in forward/ backward buffer segments
help in seamless navigation experience to users.

Storage of a fixed number of pages in cache (cache capacity),
helps in gaining full control on resource utilization. Fixed
and configurable cache size helps in achieving a steady
application performance.

Limitation
This solution works very well for gradual navigation of pages
in forward or backward direction, but it would not be able
to provide users Service calls are triggered at following page
positions with first and last page link in pagination table.

Forward/ backward navigation keeps triggering service
calls at specific pages and load/ unload of data continuous
updating cache content. As a result, first page and last page
content are not maintained all the time in cache.

Conclusion
Design of client-side pagination strategy is a challenge
to system designers especially for handling large set of
data. There are well known algorithms and approaches for
handling scale oriented challenges related to pagination
at server-side, but a separate strategy for client-side

pagination need to be in place to accomplish an end-to-
end success. The proposed solution explained in this paper
helps in addressing the client-side pagination challenges.
This solution follows a well-orchestrated service call and
page management strategy. Extensive use of configurable
parameters help in gaining full control on performance
trade-offs.

Future Work
Additional capabilities, for support of first and last page in
pagination table, would provide additional value in user
experience. Further analysis can be performed related to
performance and scale.

References
1. Oleg M. Ajax programming with Struts 2. Network

World, Inc. 2019.
2. Lyndon B. Perfect PHP Pagination. Site Point. 2019.
3. Jack M. Offset and Cursor Pagination explained. 2019.
4. Technical Servies. The art of pagination - Offset vs.

value based paging. Novatec. 2019.
5. Cao J, Wang W, Shu Y. Comparison of Pagination

Algorithms Based-on Large Data Sets. In: Qi L.
(eds) Information and Automation. ISIA 2010.
Communications in Computer and Information Science,
2011; 86.

6. Sven L. Pagination - Examples and Good Practices.
Smashing Magazin. 2019.

7. Abdul-Rahman A, Gimson R, Lumley J. Automatic
Pagination of HTML Documents in a Web Browser. 2009.

8. Hu M, Kuang Y. Human-Machine Interface: Design
Principles of Pagination Navigation in web applications.
ICCSE 2014. The 9th International Conference on
Computer Science & Education. 2014.

9. Wang P, Xi Y, Ma L et al. Research and Implementation
of Pagination Algorithm over Massive Data Based on
Ajax Technology. IEEE Xplore 2009.

10. Bootleg. How Paging Improves or Worsend your
website. Moz. 2019.

11. Manjoo F. Stop Pagination Now. Slate 2019.
12. Eder L. Why Most Programmers Get Pagination Wrong.

D Zone. 2019.
13. Piller M. How to Efficiently Load Large Data Sets in

a Mobile App With Data Paging. Backendless. 2019.

