
Research Article

Journal of Engineering Design and Analysis (ISSN: 2582-5607)
Copyright (c) 2020: Advanced Research Publications

I N F O A B S T R A C T

In this study, I present a new web interface for major bioinformatics
algorithms and introduce a novel approximate string-matching algorithm.
My web interface executes major algorithms on the field for the use of
computational biologists, students or any other interested researchers.
In the web interface, algorithms come under three sections: Sequence
alignment, pattern matching and motif finding. In each section, I
introduce algorithms in order to find best fitting one for specific dataset
and problem. The interface introduces execution time, memory usage
and context specific results of algorithms such as alignment score.
The interface utilizes emerging open source languages and tools.
In order to develop light and user-friendly interface, all parts of the
interface coded with Python language. On the other hand, Django
is used for web interface. Second contribution of the study is novel
A-BOM algorithm, which is designed for approximate pattern matching
problem. The algorithm is approximate matching variation of Backward
Oracle Matching. I compare my algorithm with popular approximate
string-matching algorithms. Results denote that A-BOM introduces
30% to 80% short runtime improvement when compared to current
approximate pattern matching algorithms on long patterns.

Keywords: Bioinformatics, A-BOM, Interface, Approximate Pattern
Matching

E-mail Id:
sambit_cse@gita.edu.in
Orcid Id:
https://orcid.org/0000-0002-4651-7633
How to cite this article:
Pattnaik S. A String-Matching Operation using
Finite Automata and Online Interface for
Bioinformatics Algorithms. J Engr Desg Anal
2020; 3(2): 1-7.

Date of Submission: 2020-11-04
Date of Acceptance: 2020-12-02

A String-Matching Operation using
Finite Automata and Online Interface for
Bioinformatics Algorithms
Sambit Pattanaik
Gandhi Institute for Technological Advencement, Bhubaneswar, Odisha, India.

Introduction
Recent development of the technology has introduced big
amount of data in scientific fields. For instance, biologists
extract has DNA sequences of organisms, where a human
genome consists of nearly 3 billion nucleotides. In order to
the DNA store and extract its features, new computational
methods and tools are needed. As a result of this fact, a new
discipline, Bioinformatics, has been emerged. Bioinformatics
is an interdisciplinary study field which tries to understand
biological information. For this goal, researchers of the
computer science and biology introduces various tools

and software that can collect, store and process biological
data. Particularly, main motivation of computer scientists
presenting new algorithms and software tools. One sub field
of Bioinformatics is fast and accurate sequence matching
among long nucleotide sequences. The sequence matching
studies are important since DNA strand of living organisms
are very long. For instance, human genome consist of
nearly 3 billion nucleotides and sequence alignment among
the genome sequences are computationally expensive.
Therefore, efficient algorithms and software tools are
highly demanded.

Journal of Engineering Design and Analysis
Volume 3, Issue 2 - 2020, Pg. No. 1-7

Peer Reviewed Journal

ISSN: 2582-5607 2

Pattnaik S
J. Engr. Desg. Anal. 2020; 3(2)

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

In terms of computational aspects of biology, there exist
three major sequence alignment problems. Literature
denotes these problems as sequence alignment, pattern
matching, motif finding.

The sequence alignment process is finding relationships
between the sequences to identify similarity of species.
The problem is mutations can occur in DNA sequences and
a single mutated nucleotide on middle of long sequence
corrupts all alignment. This problem handled by dynamic
programming and its variations like Smith Waterman and
Needleman Wunsch.1

Pattern matching is the second challenging problem in
bioinformatics.2 The process in the basic is detecting the
exactly same of pattern presences of a given pattern in
a long sequence. Since the single one sequence consist
of about 3 billion nucleotides, in case of programming 3
billion characters, brute force approaches can’t handle
the problem in reasonable time. To solve this problem,
searching approach should detect the positions which
have no chance to match and skip these points for reduce
volume of searching points.

Motif finding is the third and still under development
problem in bioinformatics. The main idea for motif finding is
detect the most repetitive sub sequences.3 There are many
problems for the process like how many is motif length
should be or how can group ‘k’ length patterns current
approaches usually offer divide and conquer technique. In
the interface, an algorithm had presented for motif finding
with the technique.

Sequence alignment is commonly is used by biologists to
compare nucleotide sequences and to find functions of the
genomes. There exist various software utilities that contain
tools to do string matching methods such as sequence
alignment, pattern matching and motif finding. On the other
hand, advancements in web framework technologies and
programming languages enables to design better software
tools. Also, novel string- matching algorithms give rise to
new interfaces and tools.

Performance of the string-matching algorithms depends
on the data set and problem4 Even further performance
of and approximate string matching depends on the data.
Most commonly used techniques are based on Dynamic
Programming.5 However, the techniques require high
memory consumption.

Finally, some of the most efficient genomic analysis tools
require licenses. Also, the tools may have access limitations.
In contrast, developing an open source tool with easy
access property contributes to the educational demands.
So that native language support can be introduced as well.
This study aims to present free, complete, user friendly
interface for whole bioinformatics field. The tool supports

both English and Turkish languages. Therefore, it can be
useful for biology students who cannot read English.

The tool also introduces a novel approximate string matching
algorithm. The algorithm speeds up string matching time.
Due to its automata-based technique, it also reduces
memory consumption.

Overall the study has two contributions to the literature.
First, it presents a novel approximate string-matching
algorithm. Second it introduces a new bioinformatics
interface, which is coded with open source languages.
The bioinformatics interface presents a simple and efficient
interface. Together with its native language support it
supports academic improvement.

Definitions and Literature
Sequence alignment, pattern matching and motif finding
problems have several solution approaches. In this section
each major problem and their fundamental solutions will
be mentioned in separated subheadings. Only de facto
algorithms have explained in detail, other approaches in
literature are variations of these major algorithms.

Sequence Alignment

Sequence alignment aims to find similarity of two squences.
Let’s suppose that we have two sequences defined as:

The sequences are not exactly the same but they are very
similar to each other. In example, there are two text that are
T1 and T2 and all characters of the texts are same except
i-th character. The i-th character of T1 is not same with
i-th character of T2. So, the equation can be defined as:

To find optimum relativity between the sequences,
sequences need to be realigned with gaps. Sequence
alignment is an essential problem because in real world,
sequences not always remain in their original form of being
created due to mutations. On the other hand, corruptions
may arise during sequencing. To solve these kinds of
problems, there are two major approaches in literature;
Smith-Waterman and Needleman Wunsch. Both algorithms
are variation of dynamic programming.6

Smith-Waterman Algorithm is a variation of dynamic
programming. Dynamic programming approaches for
sequence alignment have common variables like match
score, mismatch score and gap score to calculate similarity
score. Dynamic programming using for creating a relativity
matrix from the sequences in Smith-Waterman algorithm.
Each node of matrix value is maximum value of transitions
from left, top and left top diagonal nodes. There are one

Pattnaik S
J. Engr. Desg. Anal. 2020; 3(2)

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

ISSN: 2582-56073

more value which is zero for calculation maximum value
additionally. Zero value gives a guarantee to there are
no negative value in matrix. This particular precaution
increases alignment success efficiency. The diagonal
transition represent match, other transitions means gaps.
Once matrix have crated, trackback on matrix from last node
to first node for calculating alignment score. Algorithm and
explanations can be found on.7

Pattern Matching

In terms of exact string search, pattern matching can be
defined as detecting occurrences of the pattern on a long
sequence.

Let suppose we have a sequence T as defined in sequence
alignment. On the other hand, we have another short
sequence which entitled pattern, P, as:

Pattern matching aims to locate the sub sequences which
is same with P exactly or tolerance contrast in a range. In
general, there are two approach to pattern matching: exact
and approximate matching. Exact pattern matching aims
to find presences of exactly the same of P in sequence as
follows:

Current approaches using several skip algorithms to do
this process efficiently. Skip algorithms boost matching
process because many position skips and that means far
less operations while matching. Essentially there are two
main idea behind the skip algorithms, bad character and
good suffix. Bad character means if there is any mismatch
while matching, shift the pattern until the bad character
is not in current sub sequence. The good suffix means if
there is any prefix which same with suffix on mismatch
point, shift pattern to align prefix with suffix. All major
algorithms developed with these two approaches like KMP,
Boyer Moore, BOM etc.

Knuth Morris Pratt algorithm is an exact pattern matching
algorithm which searches for presences of P within a
subsequence T by using bad character approach. Before
the matching process, pre-process should be done on P
for calculating skip count for every position of P. Detailed
explanation can be found on.8

The Boyer-Moore algorithm is another exact matching
algorithm. As a distinct from KMP, Boyer-Moore algorithm
combining good suffix and bad character approaches. While
matching, if there is a mismatch between current part
of T and P, looking bad character and good suffix tables
respectively for decide shift count on current position.
Details can be found on.9

Another exact pattern matching algorithm is Backward
Oracle Matching, BOM. BOM is an automat-based algorithm

which is variation of BNDM algorithm. The details of BNDM
algorithm can be found on. The BOM algorithm based on the
Boyer-Moore strategy. Thereupon try to match prefix with
suffix of the pattern on mismatch position. On the other
hand, matching progress performs right as a necessity of
good suffix approach. The algorithm using automat instead
of tables unlike other Boyer-Moore approaches.

The first step of generating BOM automat is taking reverse of
pattern and generates states for each character in reversed
pattern and character transitions are added between
the states respectively. After produced all factors of P,
transitions for factors appends to the automat. Search
algorithm and details can be found on.

The second approach for pattern matching is approximates
pattern matching. Approximate pattern matching differs
from exact matching with mismatch tolerance. That means
matching process tolerance to mismatches as long as
number of mismatches is under threshold. Formula:

The approach makes possible to find out mutated presences
but this gain also cause computational weight to the
matching process. For reducing this weight, approximate
matching algorithms should have very efficient skip
algorithms. On the other hand, producing skip algorithm for
approximate pattern matching algorithms harder than exact
algorithms because skipped part could contain possible
matches unlike exact approaches. To solve this problem
usually skip algorithms does pre-processing on pattern,
text or both of them.

Approximate pattern matching approaches compare pattern
and text characters one by one until mismatch counter reach
to the threshold or overall characters of the pattern has
been compared. If mismatch counter exceeds the threshold
the text shifts one character. On the other hand, if does
not exceed the threshold after all characters have been
matched, that means there is a match on current position.
In other words, naive search using hamming distance to
decide matching occurred on current position or not. If
distance is under threshold there is a match or exceeding
threshold is not. There is no skip mechanism in naïve search
that means naïve search is a linear brute force matching
algorithm but still useful small patterns and sequences
due to no needs pre- process on neither text nor pattern.

An efficient approximate matching algorithm which is
Burrows Wheeler transform firstly developed for data
compression but nowadays there are many usage areas like
pattern matching and sequence alignment. The basic idea
behind BWT is produce the permutations of the characters
of text and positioning closely to similar contexts. That
means in approximate matching, k mismatched contexts

ISSN: 2582-5607 4

Pattnaik S
J. Engr. Desg. Anal. 2020; 3(2)

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

can be found in k neighborhoods. This process increases
efficiency of approximate matching but on the other hand,
pre-process on long patterns takes long execution times.
Exhaustive explanations and detailed example could be
found on.

Approximate BOM
In this study, we present the approximate version of
Backwards Oracle Matching algorithm. Recall that
approximate pattern matching enables to find very
similar presences of pattern on text. The flexible matching
approach extends scope of matching but the profit comes
with computation weight because of permutations of the
pattern. In general, approximate search algorithms are
slower by nature. Especially matching takes huge execution
times on long patterns. To overcome the problem, any
pre-process should be done on pattern before matching.

BOM algorithm is an automat based exact pattern matching
algorithm as mentioned above. The algorithm offers an
automat for permutation problem. The automat provides
how many shifts performs any location on mismatch. The
automat accelerates the matching process because shift
counts for all permutations have already calculated. From
this idea, the automat-based approach could be applying
on approximate pattern matching. The novel A-BOM
algorithm is approximate variation of Backward Oracle
Matching algorithm. BOM algorithm is best fit when long
pattern searching case because all suffix combinations
(factors) are calculated before search process and factor
automaton prepared for search process. That means when
any mismatch occurs on any position, search already know
to how many shifts are necessary. Therefore, like BOM
algorithm, approximate BOM algorithm is supposed to be
powerful on long pattern search.

Approximate BOM algorithm using same automata logic
and matching function with BOM algorithm can be found
on. Approximation feature provided on calculating match
score of current sub sequences. Unlike BOM, the algorithm
doesn’t skip current position on mismatch until error
counter is under threshold. When any mismatch occurs
as long as error counter under threshold, matching branch
out sub matching process by all transitions of current state.

Figure 1.Factor Oracle Automat of the
Pattern P=GTAACTGTA

Figure 2.Branching on the Mismatch Third Character

Let’s suppose there is a pattern like P=GTACTGTA. The
automata of reversed pattern shown in Figure 1.

On the other hand, let assume that also there is a sequence
T= GTACTTTA. Let’s suppose that the threshold is 3. The
score function performs matching from end to begin due
to Boyer Moore characteristics. When the score function
come at third letter, the letter T is not match with the third
character of pattern G. The approximation mechanism
step in and branching starts at position 3. The root process
branches out four sub matching process because of alphabet
consist of four letter which A, T, G and C. The branching
shown in Figure 2.

The sub processes perform matching after mismatch
location and they can branch out as long as error doesm’t
reach up to threshold. Therefore, matching score function
designed as recursive. Branches go on matching with related
transition of current state. There is a significant detail on the
transitions. If there are no transition or the transition offers
to jump over left error tolerance, branch go on matching
with state of next expected character on the pattern. After
all branches done of any parent process, largest matching
score of branches adds parent’s score and this adding
process continues until the root matching process.

After all branches of root process’s done, function returns
the matching score to matching function. The matching
function announces there is a match on current position
when the matching score equals to pattern length. On the
other hand, if they are not equal, skips the matching location
as much as subtraction of pattern length and matching
score. Pseudo code of match score function explained in
Algorithm 1.

Experimental Result
In this section we introduce experimental performance
comparison results of our approximate matching algorithm
against Barrows Wheeler and Naive hamming distance based
approximate matching algorithms. All the experiments we
perform on a computer, with an Intel i3, 2.30 GHz CPU with
8 GB of RAM and running Ubuntu 19.10, 64-Bit. The code
was written in C and compiled with Geaney IDE.

#Score Function

WHILE index > 0 and current_state != length of automat
IF sequence[index] in current_state move to next state

Pattnaik S
J. Engr. Desg. Anal. 2020; 3(2)

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

ISSN: 2582-56075

Else Break End While
IF index > 0 and error_counter < threshold FOR EACH
transition in alphabet
IF (next_state_transition current_state + error_counter) <=
threshold and next_state_transition is not null
error counter += next_state current state
append Score(next_state_transition) to temp_indexes
Else
append Score(next_expected_state) to temp_indexes
index =min(temp_index) RETURN index

Algorithm 1: Match score function algorithm

Test Sequence has 50K nucleotide and pattern lengths
are variable. All experiments are repeated 100 times and
averaged results are collected. In Table 1, execution times
of algorithms are represented. Short names in Table 1, used
as, A-BOM for Approximate Backward Oracle Matching, BWT
for Burrows Wheeler Transform and NAIVE for Hamming
Distance based approximate string matching.

Pattern
Length

Error
Rate A-BOM BWT NAIVE

5 1 0. 084729 3.896761 0. 052436
10 1 0. 037810 3.867000 0. 046877
15 1 0. 031255 3.838748 0. 046883
25 1 0. 015626 3.932374 0. 053443
50 1 0. 002548 3.983852 0. 062507
5 2 0. 226232 3.821203 0. 062556

10 2 0. 084656 4.098129 0. 069030
15 2 0. 037353 3.824674 0. 068765
25 2 0. 022149 4.027949 0. 062505
50 2 0. 015628 3.898494 0. 069025
10 5 0. 268755 4.067687 0. 099815
25 5 0. 115907 3.974571 0. 099862
50 5 0. 052977 4.229776 0. 099817
75 5 0. 046839 4.139655 0.100351

100 5 0. 031255 4.007760 0. 100320

Figure 3.Sequence Alignment Results Page

The results on the Table 1, presents execution time of
algorithms in seconds. The observations donate A-BOM
algorithm performance increasing with pattern length
progressively unlike naïve matching algorithm. On the
other hand, performance of BWT algorithm doesn’t show
significant variance on different patterns lengths.

The result denote that, A-BOM algorithm yields performance
result on long patterns. Results of Table 1, denotes that
highest performance improvement occurs when the pattern
length is 50 or 100. In general, observations donate the

algorithm has from 30% to 80% better performance when
pattern lengths over 10. Table 1, concludes that A-BOM
is slower than naïve algorithm on short patterns, but still
donates reasonable execution time. Increasing error rate
influence unfavourably all algorithms. Our algorithm is
affected than high error rates because of the branching
characteristic.

In summary, A-BOM yields efficient approximate string
matching for long patterns. Since pattern search on long
DNA sequences is common, our algorithm can make sense
for DNA sequences that contain mutations.

Web Interface
The web interface can accessible on https://github.com/
burakkoca/BioLab address. In the interface, sequence
alignment, pattern matching and motif finding can be
easily done with user friendly graphic interface. Interface
supports big amount of data. That means the interface can
be used for academic and research projects. Students can
use learning major solutions and try on own datasets also
compare with several algorithms for the best fit solution.
All algorithms which mentioned in proposal are presented
in the interface. There are Smith-Waterman and Needleman
Wunsch algorithms for sequence alignment. For exact
pattern matching KMP, Boyer-Moore and BOM algorithms
are available and BWT, naïve search and A-BOM presented
to perform approximate pattern matching. Motif finding can
be done with greedy algorithm. How to use the interface
introduced in separated subheadings for all solutions.

Sequence Alignment. The Sequence alignment algorithms
can reachable sequence alignment collapsible item on left
menu. Both KMP and Boyer-Moore algorithms have same
interface for alignment. There are five field that has been
labelled for sequences, gap, match score and mismatch
score. After all fields press align button for alignment.
Note that, sequence length must be under ten thousand
and must be consist of nucleotide letters.

When a query is given on the interface, results are returned
in another page. Aligned string, gap score, gap ratio, match
score, match ratio introduced in that page. In Figure 3 first

Table 1.Average Running Time for 50K Length
DNA Sequence

ISSN: 2582-5607 6

Pattnaik S
J. Engr. Desg. Anal. 2020; 3(2)

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

row presents aligned sequence. In Aligned sequence string,
dashes stand for gaps and rods represent matches. Second
row coloured and presents match, mismatch and gap statics.

Pattern Matching

The Pattern search algorithms can reachable “Exact Pattern
Search” and “Approximate Pattern Search” collapsible items
on left menu. Both exact and approximate matching pages
have same interface for all algorithms but approximate
pattern matching page has threshold field additively. The
fields introduce with related parameter of matchin. After
all fields filled press “Match” button for pattern matching.
Note that, for only pattern matching sequence length could
reach up to one million.

Pattern matching results are presented in consecutive web
page. In other words, sequence, match points, and match
count presented in result page. In Figure 4, First row on the
page presents treated sequence with coloured presences
of pattern. Second row represents matched locations and
last row demonstrate match count.

Figure 4.Pattern Matching Results Page

Figure 5.Motif Finding Results Page

After all fields filled, press “ Find Motif” button for motif
finding.

Founded motifs and consensus motif presented in Results
page that shown in Figure 5. Treated sequence stay on the
first row of results. Second row presents founded motifs
and last row show us the consensus motif.

Comparison

Each solution group have own “Compare” tab in collapsible
menus. Comparison pages have same interface with related
solution page. Comparison results pages are same for all
solutions. The results introduced in a table which each
comparison parameter heading for each algorithm.

Conclusion
In this study I introduced a useful interface for all major
bioinformatics problems solution algorithms. The interface
differs from variations with wide scope. From educational
to scientific purpose, any people who interested in
bioinformatics can take the advantage of the interface
because of the extensive content’s opportunity. Also, the
interface offers to execute algorithms with large amount
of data opportunity in free form. On the other hand, to the
best of our knowledge there is no national interface that
provides pattern matching, sequence alignment and motif
finding for bioinformatics field and this study fulfill the
need. We believe that the study nourishes bioinformatics
studies in our country and worldwide.

The second contribution of this study is a novel approximate
string-matching algorithm which presents best performance
for long patterns. Experimental results show that
approximate approach of BOM speeds up approximate
matching on long patterns. My solution yields up to 80%
better performance compared to Burrows Wheeler and
Hamming Distance approach if pattern length is longer than
10. The results may contribute to the recent bioinformatics
researches. For example, A-BOM may fit better for
approximate matching problems like error correction or
merging read data from new generation DNA sequencing
methods like Nanopores. In summary, the algorithm can
be used for tolerant pattern matching with long patterns.

References
1. Pevsner J. Bioformatics and fuctional genomics.
2. Smith TF, Waterman MS. Identification of comman

molecular subsequences. Journal of molecular biology.
Academic Press Incorporated, London, 40-48. doi: 10.
1016/00222836(81) 90087-5.

3. Needleman SB, Wunsch CD. A general method
applicable to the search for similarities in the amino
acid sequence of two protiens. Journal of molecular
biology. Academic Press Incorporated, London. 1970;
40-48. doi: 10. 1016/00222836(81) 90087-5.

Motif Finding

Motif finding algorithm can reachable “Motif Finding”
collapsible item on left menu. There are two input for motif
finding on the web page. The first input takes sequence and
second one for motif length. Multi sequences could be using
for motif finding by separating sequences with comma.

Pattnaik S
J. Engr. Desg. Anal. 2020; 3(2)

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

ISSN: 2582-56077

4. Bishop CM. Machine learning and pattern recognition.
Information science and statistic springer, Heidelberg.

5. Dhaeseleer P. How does DNA sequence motif discovery
work? Nature biotechnology 2006; 24(8): 959-961.

6. Ozcan G,Unsal OS. Fast bitwise pattern matching
algorithm for DNA sequences on modern hardware.
Turkish Journal of Electrical Engineering & Computer
Sciences 2015; 23(5): 1405-1417.

7. Langmead B, Salzberg SL. Fast gapped read alignment
Bowtie 2. Nature Methods 2012; 9(4): 357.

8. Knuth DE, Morris JH, Pratt WR. Fast pattern matching
in Strings. Journal of Molecular Biology, SIAM Journal
on Computing 1977; 323-350. DOI: 10.1137/0206024

9. Boyer RS, Moore JS, Pratt WR. A fast string searching
algorithm. Journal of Molecular Biology 1977; 762-772.

