
Review Article

Journal of Engineering Design and Analysis (ISSN: 2582-5607)
Copyright (c) 2023: Author(s). Published by Advanced Research Publications

Journal of Engineering Design and Analysis
Volume 6, Issue 1 - 2023, Pg. No. 30-35

Peer Reviewed Journal

I N F O A B S T R A C T

Corresponding Author:
Animesh Shrivastava, Chandigarh University,
Mohali, Punjab, India.
E-mail Id:
er.animesh10@gmail.com
Orcid Id:
https://orcid.org/0009-0006-2045-9275
How to cite this article:
Srivastava A, Saini PK. Ordering Program Elements
According to Testing Requirements. J Engr Desg
Anal 2023; 6(1): 30-35.

Date of Submission: 2023-03-25
Date of Acceptance: 2023-04-03

Ordering Program Elements According to Testing
Requirements
Animesh Srivastava1, Parveen Kumar Saini2

1,2 Chandigarh University, Mohali, Punjab, India.

Introduction
A variety of techniques for prioritising and selecting test
cases and influencing nodes have been proposed and
empirically investigated in Survey.1,2 The current knowledge
in these areas. According to the findings, most existing
methodologies apply structural or functional coverage
requirements in relation to the source code run during
test cases. One way that our ideas differ from those in the
literature is in this area.

Even though testing software is an expensive task in and of
itself, the cost of releasing software without testing could be
much higher, especially if it affects people’s safety. Software
testing is any action that looks at a programme or system’s
feature or ability to see if it does what it’s supposed to do
and if it does it well. Even though software principles are
important to the quality of software and are often used
by both programmers and testers, software testing is still
thought of as an art. Software testing is hard because of
how complicated software is. We can’t test a programme

Finding flaws in a software product is the goal of the testing process.
However, even after successfully completing the testing step for the
majority of practical systems, it is impossible to ensure that the program
is error-free. This is a result of the vast input data domain found in the
majority of software applications. It is not realistic to test the software
in every possible configuration that the input data might take. Even
with this real-world constraint on the testing process, its significance
shouldn’t be understated. It must be kept in mind that testing does
reveal numerous flaws in a software program. Testing thus offers a
useful method of lowering system flaws and boosting users’ confidence
in a built system. A few flaws typically persist even after a program
has undergone extensive testing. Usually, these remaining flaws are
dispersed across the code. It has been noted that flaws in some areas
of a program can lead to failures that are both more frequent and more
severe than those in other areas. The statements, methods, classes
of an object-oriented program should thus be able to be arranged
according to how likely they are to result in errors. After the program’s
components are arranged, the testing effort can be distributed so that
the components that frequently fail are tested more. In this method, a
program’s intermediate graph representation is exploited. A forward
slice of the graph is used to estimate a class’s influence. Applications
for our suggested program metric include coding, debugging, test case
design, maintenance, among others.

Keywords: Testing, Software Testing, Test Case, Prioritization,
Object Oriented Programming

mailto:er.animesh10@gmail.com

31
Srivastava A et al.

J. Engr. Desg. Anal. 2023; 6(1)

ISSN: 2582-5607

well if it’s not very complicated. Debugging is just one part
of the testing process. Testing can be done to make sure
something is reliable, to make sure the quality is good, or
to verify and validate. Testing can also be used as a general
way to measure something. Testing for correctness and
testing for reliability are two of the most important types
of testing. When testing software, you have to choose
between cost, time, quality.

The earlier problems are found and fixed over the software
life cycle; the less money is spent doing so. Our daily
lives are becoming more and more infused with software
solutions. Software firms are under tremendous pressure to
deliver extremely reliable products with very little tolerance
for errors. In order to find all flaws, software products are
typically tested on several levels. the computer programme.
Even after successfully completing the testing process, it is
impossible to ensure that a software product is error-free
for the majority of practical systems. This problem is caused
by the fact that the input data domain of most software
products is very large.

Additionally, both time and budget constraints apply
to every software product development effort. it is not
possible to fully test a piece of software by giving it every
possible value for the input data. At the moment, testing
takes up an average of half of all development costs and
time.10

So, it’s unlikely that the amount of testing will be done
even more. Traditional testing methods are used to test
each part of the software product thoroughly. This means
that bugs in the software are spread out evenly. But when
bugs are present in some parts, they cause problems that
are worse and happen more often than in other parts. For
instance, if a statement makes important data that many
other statements need, then a mistake in this statement
would affect many other statements. So, our goal is to figure
out which parts of a programme are the most important
and need to be tested more thoroughly. We say that an
element’s influence is the measure of how important
and serious it is. We came up with a way to measure how
important a statement is and how important a method
is. With these two measurements, we can figure out how
important a class is. Characterizing code can help with
designing, writing, testing, maintaining software. We use
the Extended System Dependent Graph to show how
code works in the middle. So, it doesn’t look like the work
of testing could be done any better. Since testing is a
sample, it is always important to choose what to test and
what not to test, as well as how much to do. The majority
of systematic test methods, such as white box testing
or black box methods such as equivalence partitioning,
boundary value analysis, or cause-effect graphing, generate
an excessive number of test cases.7

Motivation for our Work
As computers and software are frequently utilised in crucial
applications, a flaw might have disastrous results. Huge
losses may result from bugs. Critical system bugs have
led to plane catastrophes, allowed the space shuttle’s
systems to fail, suspended stock market trade. A bug can
kill. Disasters can be caused by bugs.

Software’s dependability and quality are crucial in a society
where everything is computerised. Only by conducting
rigorous testing can this be possible.

In today’s generation lives on the internet and uses IoT
devices, we are using firmware, which is important for
medical to agriculture. Everywhere we are using software
for analysis and for decision making, so reliable software
is needed every hour.9,11,12,13,14

Objective of our Work
The impact of various programmed elements on the
overall reliability of a programmed varies significantly.
The influence of different components must therefore
be described, the more trustworthy components must
undergo extensive testing. to identify undiscovered errors
based on specifications. Make sure the product is clear of
bugs before shipping or releasing. “Quality is Guaranteed.”

The primary goal of our research is to create effective
algorithms to determine how a statement, a method, a
class affect an object-oriented programmed. The goal of
our work is to find and fix software bugs as early as possible
in the software development process, so that software
doesn’t break down often or badly.

The goal of our work is to identify and isolate software faults
at the earliest possible phases of the software development
cycle in order to prevent frequent and serious software
failures. Our objective is to reduce the failure rate of
a system while staying within the testing budget. Two
elements are included in the test plan for this.

1. The most crucial components of the application ought
to be tested first.

2. Thoroughly test the sections of the code where the
presence of a single defect increases the likelihood
of failure.

The first one can be identified by taking a look at function
visibility, usage frequency, potential failure costs. For the
second one, we’ve come up with an algorithm to find the
important parts of the source code.2

Related Work
A lot of papers have been written about how to order
test cases.4,5 But not much has been said about the work
done to figure out which parts of the code are the most
important. Before test cases are made, not much research

32
Srivastava A et al.
J. Engr. Desg. Anal. 2023; 6(1)

ISSN: 2582-5607

has been done on how to improve testing. In this field, one
area of study is how to make software that can be tested.
This work tries to explain how to make software that is
easy to test and, hopefully, cheaper to test.

During the design phase of this work’s development life
cycle, the preconditions, postconditions, assertions for each
module are chosen. The other part of pre-testing is setting
priorities for testing code. I suggested a way to figure out
priorities that puts the most important parts of the code
that need to be tested at the top of the list and makes
them stand out. This would be a quick way to improve
code coverage. Code coverage is a metric that shows how
much of the source code of an application is run when its
unit tests are run. In theory, the better the code works,
the more of it is covered. But 100% code coverage doesn’t
mean that an app is bug-free in real life. To figure out how
powerful an object is, you look at how many other objects
in the given programmed use it directly or indirectly. A
method on an object can sometimes tell other objects in
a programmed what to do by the value it sends back. So,
an object’s power depends on how many other objects in
the programmed depend on it for both control and data,
either directly or indirectly. First, we use the source code
to make an intermediate representation called a “control
dependence graph.” Then, we run the programmed using
the given set of data. We show our proposed algorithm,
which can figure out the influence value of any object and
get the dynamic slice of any object at any execution point.
Prioritized testing is part of what we do to make sure that
the testing process makes great software within the testing
budget. In this section, we focus on research results that
were reported in the context of prioritization techniques,
at the time of test case selection in test suites, or before
test cases were built.2

Control Flow
The control flow graph (CFG) is a programmed representation
that can be used as a step in several optimization code
transformations, including common subexpression removal,
copy propagation, loop invariant code movements.

Via the Program Control Dependence Graph, we find the
dependence and which affects others. This is one of the
ways we can use to find the dependence and affect each
other.

Profiling
When we profile a programmed, we can observe where it
spent its time and which functions it called when they were
active. This data can highlight the areas of the programmed
that are running more slowly than anticipated and may
benefit from rewriting to speed up execution. Additionally,
it can reveal which functionalities are being used more or
less frequently than you anticipated. You might be able to
see bugs that you wouldn’t have otherwise.

Proposed Methods
Earlier work might take a long time (a month or a year),
depending on how big the test suite is and how long it
takes to run each test case.

But if testers use an effective prioritization technique,
they can change the order of the test cases to find faults
more often. The method described in this paper used a
prioritization algorithm to set the order of the test cases.
The goal was to find as many bugs as possible during the
constrained execution.

Ordering of Features in a Program
In this section, we explain how we decide the order of
programmed elements based on how thoroughly they should
be tested. First, we explain how we plan to do things. After
that, we show how we calculate the effect of the statement,
the effect of the method, the effect of the class.

A Review of Our Methodology
An object-oriented program’s classes are made up of code.
Every class, it is assumed, contains variables and methods.
A class’s influence is made up of the cumulative effects of
all of its component parts. As a result, we assess the impact
of each statement and, if a statement calls a method, we
assess the impact of the method as well. Our approach
ignores variable values and is based on a static analysis
of the code. As a result, it has trouble handling loops and
recursive function calls. Class has the same impact as
the sum of the impacts of all applicable assertions and
procedures. This technique determines a class’s effect
statically. We first go over how to determine the influence
of a remark, then influence of a method and influence of
a class are discussed.Figure 1.Program Control Dependence Graph

33
Srivastava A et al.

J. Engr. Desg. Anal. 2023; 6(1)

ISSN: 2582-5607

Influence of a Statement
The output of one statement in a programme could be
dependent on the output of another one. The statement
is more critical if the influence is higher. The number of
other statements in the supplied programme that directly
or indirectly use that variable determines the statement’s
influence. Given that there is no call vertex, we provide a
metric to calculate influence. If a statement is designated
as a vertex, its influence will be determined independently
using the method metric’s influence, then added to
determine the desired statement’s overall influence. The
following factors are used to determine the statement’s
percentage influence:

Total number of impacted nodes

__________________________________ × 100

The total number of nodes in the graph

Algorithm

Input: The code for the programme and the statement.

Outcome: Effect of the given statement.

StmtInfluence(statement) 1. Build the program’s ESDG in
a static way.

2. The for statement should go through all of the edges
that depend on it and mark them.

3. Repeat step 2 for each of the marked nodes until there
are no more edges that depend on them.

4. If a marked node is a call vertex, use MethodInfluence
to figure out how important it is (callvertex).

5. Count the marked nodes and use an expression to figure
out the influence (1).

6. Stop.

}

Influence of a Method
When a method in a programme works out a result, that
result affects the other methods and statements. One
method can have an effect on another method or statement
in the programme. If the method has a bigger effect, then
it is more important. We have made a metric for object-
oriented programmes called “the influence of a method.”

The impact of a method is measured by how many other
statements and methods in a given programme use the
method’s results directly or indirectly.

If the method we want to find the influence of calls other
methods, the total influence of the method will be the sum
of the influence of the method itself and the influence of
the methods it calls.

The percentage of a method’s effect can be found by:

Total number of impacted nodes

________________________________ × 100

The total number of nodes in the graph

Algorithm

Input: The name of the method of a programmed and the
name of the method of the programmed.

Results: What the method did.

MethodInfluence (callvertex){

1. ESDG should be a part of the programmed.

2. Go through all the edges and mark the ones you’ve
already been to for the method’s starting point.

3. Go through all of the edges of each node you visit and
label the node it belongs to as visited, if it isn’t a call-vertex
node, mark it as influenced if you haven’t already.

4. Determine whether each visited node is a call vertex.
If so, proceed along the call’s edge and do the following:

(a) Call the vertex and walk through each polymorphic edge
if the following node is polymorphic and add the matching
node to a queue Q

b) If it doesn’t, add the node to Q.

5. Remove the nodes from Q. Mark the affected node, then
repeat steps 2–4 for that node.

6. Step 5 should be repeated until there is nothing in Q.

7. Go through each node that has been marked as influenced
and mark each of its edges as influenced.

if it hasn’t been done already.

8. Use the phrase to figure out what the method will do (2).

9. Stop.

}

Influence of a class
The influence of a class is the sum of the effects of all the
other parts of a given programmed that use the results
of the class in some way. We count how many nodes are
affected. The MethodInfluence(callvertex) metric is used
to figure out the influence of nodes that contain function
calls. The StmtInfluence (statement) metric is used to figure
out the influence of all other statements.

The influence of a class is given as:

Total number of impacted nodes

________________________________ × 100

34
Srivastava A et al.
J. Engr. Desg. Anal. 2023; 6(1)

ISSN: 2582-5607

Table 1.Experimental Studies

Figure 2.Experimental Studies

The total number of nodes in the graph

Algorithm

Input: A sample programmed and the class’s name.

Outcome: How the class changed things.

ClassInfluence(classname)

{

1. Build the program’s ESDG in a static way.

2. Move through the class entry vertex to each member
of the class and mark each one as visited.

3. For each visited node, go through all of its edges and
mark the corresponding node as visited. If the node is
not a call-vertex, mark it as influenced if it hasn’t already
been marked.

4. Check each visited node to see if it is a call vertex. If it
is, use MethodInfluence to figure out how important this
statement is (callvertex).

5. For each node that has been marked as being influenced,
go through all of its edges and mark each one as being
influenced if it hasn’t already been done.

6. Use the expression to figure out the influence of the
given class (3).

7. Stop.

}

For experimental studies’ purposes, we have taken a sample
programmed that has 134 nodes.

The sum of all nodes
that were impacted

The Program’s
Total Nodes

Relevance
percentage

96 134 71.64
22 134 16.41
8 134 5.9
7 134 5.2
1 134 .7

We have found the most influenced node, which impacts
the highest node, so we have to take that node first in
the testing. For this, we must identify the most influenced
statement, method, class and test accordingly.

• Prioritizing testing can help with a variety of aims, as
illustrated below

• Obtaining high-risk errors discovered early in the
testing process

• To increase the likelihood that specific code
modifications may create mistakes early in the testing
process

• To increase the frequency with which code that can
be covered gets covered

• To increase the reliability of a system

Conclusion
We made a programme metric that looks at how important
programme elements are. The influence shows which parts
of the programme are affected more than others. So, the
factors with more influence are more important, including
them will make it more likely that the software will fail. So,
the intended metrics help a lot in figuring out which parts
are the most important and tell us to be very careful when
building the parts that have the most impact during the
software development cycle. This shows that testing the
parts that aren’t as important can be done with fewer test
cases than testing the parts that are more important. This
saves time for testing the parts that are more important.
It is based on a program’s static analysis.

• This is helpful when creating and ranking test cases
• Understanding the impact of individual programme

elements is helpful. Due to this, we have more
trustworthy components with which to perform
rigorous testing

References
1. Prioritization of Program Elements Based on Their

Testing Requirements, Computer Science and
Engineering, Kanhaiya Lal Kumawat, National Institute
of Technology Rourkela (2009)

2. Reliability Improvement Based on Prioritization of
Source Code, Mitrabinda Ray and Durga Prasad
Mohapatra, Department of Computer Science and
Engineering, National Institute of Technology Rourkela
(2010)

3. Danjun Zhu, Gangtian Liu, “Deep Neural Network Model-
Assisted Reconstruction and Optimization of Chinese
Characters in Product Packaging Graphic Patterns and
Visual Styling Design”, Scientific Programming, vol.
2022, Article ID 1219802, 12 pages, 2022. https://doi.
org/10.1155/2022/1219802

4. S. M. Guertin. Board Level Proton Testing Book of
Knowledge for NASA Electronic Parts and Packaging

https://doi.org/10.1155/2022/1219802
https://doi.org/10.1155/2022/1219802

35
Srivastava A et al.

J. Engr. Desg. Anal. 2023; 6(1)

ISSN: 2582-5607

Program. Accessed: Oct. 2018.
5. S. M. Guertin, “Lessons and recommendations for

board-level testing with proton,” in Proc. Small Satell.
Conf., Logan, UT, USA, 2018.

6. A. Coronetti et al., “Radiation Hardness Assurance
Through System-Level Testing: Risk Acceptance,
Facility Requirements, Test Methodology, Data
Exploitation,” in IEEE Transactions on Nuclear Science,
vol. 68, no. 5, pp. 958-969, May 2021, doi: 10.1109/
TNS.2021.3061197.

7. Jordi Roglans-Ribas, Kemal Pasamehmetoglu & Thomas
J. O’Connor (2022): The Versatile Test Reactor Project:
Mission, Requirements, Description, Nuclear Science and
Engineering, DOI: 10.1080/00295639.2022.2035183

8. E. W. Dijkstra. 2022. On the Reliability of Programs.
Edsger Wybe Dijkstra: His Life, Work, Legacy
(1st ed.). Association for Computing Machinery,
New York, NY, USA, 359–370. https://doi.
org/10.1145/3544585.3544608

9. Srivastava, A., Kumar, A. (2022). A Review of Network
Optimization on the Internet of Things. In: Saini, H.S.,
Sayal, R., Govardhan, A., Buyya, R. (eds) Innovations in
Computer Science and Engineering. Lecture Notes in
Networks and Systems, vol 385. Springer, Singapore.
https://doi.org/10.1007/978-981-16-8987-1_6

10. N. Srivastava, U. Kumar and P. Singh (2021) Software
and Performance Testing Tools. Journal of Informatics
Electrical and Electronics Engineering, Vol. 02, Iss. 01,
S. No. 001, pp. 1-12, 2021. https://doi.org/10.54060/
JIEEE/002.01.001

11. Kumar, G., Singh, G., Bhatanagar, V., & Jyoti, K. (2019).
SCARY DARK SIDE OF ARTIFICIAL INTELLIGENCE: A
PERILOUS CONTRIVANCE TO MANKIND. Humanities
& Social Sciences Reviews, 7(5), 1097-1103. https://
doi.org/10.18510/hssr.2019.75146

12. Gupta, R., Bhatnagar, V., Kumar, G., & Singh, G. (2022).
Selection of suitable IoT-based End-devices, tools,
technologies for implementing Smart Farming: Issues
and Challenges. International Journal of Students’
Research in Technology & Management, 10(2), 28-35.
https://doi.org/10.18510/ijsrtm.2022.1024

13. Singh, G. and Yogi, K.K. (2022a). Internet of Things-Based
Devices/Robots in Agriculture 4.0. In: Karrupusamy P.,
Balas V.E., Shi Y. (eds) Sustainable Communication
Networks andApplication. Lecture Notes on Data
Engineering and Communications Technologies, vol
93. Springer, Singapore. https://doi.org/10.1007/978-
981-16-6605-6_6

14. Singh, G. and Yogi, K.K. (2022b). Usage of Internet
of Things Based Devices in Smart Agriculture for
Monitoring the field and Pest Control. 2022 IEEE Delhi
Section Conference (DELCON), pp.1-8. https://doi.
org/10.1109/DELCON54057.2022.9753021

https://doi.org/10.1145/3544585.3544608
https://doi.org/10.1145/3544585.3544608
https://doi.org/10.1007/978-981-16-8987-1_6
https://doi.org/10.18510/hssr.2019.75146
https://doi.org/10.18510/hssr.2019.75146
https://doi.org/10.18510/ijsrtm.2022.1024

