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Surrogate modeling has emerged as a powerful tool for solving complex 
engineering design problems by providing computationally efficient 
approximations of high-fidelity simulations. In disciplines such as aero-
space, automotive, structural engineering, and biomedical applications, 
high-fidelity models require significant computational resources, making 
optimization and real-time decision-making challenging. Traditional 
optimization methods often struggle with the computational burden 
associated with iterative simulations, necessitating alternative approach-
es that can reduce computational cost while maintaining accuracy.

Surrogate models, including polynomial response surfaces, Kriging, 
artificial neural networks (ANNs), Gaussian process regression, radial 
basis function (RBF) models, and support vector regression (SVR), en-
able rapid evaluations and facilitate efficient design exploration. These 
models approximate expensive simulations and enable engineers to 
perform parametric studies, uncertainty quantification, and multi-dis-
ciplinary optimization without the need for exhaustive computations. 
Additionally, hybrid surrogate modeling approaches, which combine 
multiple modeling techniques or integrate multi-fidelity simulations, 
have shown promising results in balancing accuracy and computational 
efficiency.

This review presents an in-depth discussion of surrogate modeling 
techniques, their theoretical foundations, practical applications in engi-
neering optimization, and recent advancements in hybrid and adaptive 
approaches. Special attention is given to the role of machine learning 
and artificial intelligence in enhancing surrogate model performance, 
particularly in high-dimensional and nonlinear optimization problems. 
Furthermore, the challenges associated with surrogate modeling, such 
as model selection, generalization, error estimation, and robustness, 
are explored in detail.

Future research directions are identified, including the development 
of adaptive AI-driven frameworks, automated model refinement tech-
niques, and improved uncertainty quantification methods.
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Introduction
Engineering design problems often involve computationally 
expensive simulations, such as Computational Fluid Dynam-
ics (CFD) and Finite Element Analysis (FEA), which require 
substantial computational resources and long processing 
times. These high-fidelity simulations play a critical role in 
evaluating complex physical behaviors, including fluid flow 
dynamics, structural deformations, thermal conductivity, 
and electromagnetic interactions. However, the sheer 
computational cost of running multiple iterations for design 
optimization makes traditional simulation-based methods 
impractical, particularly for large-scale, multidisciplinary 
systems.1

To overcome these challenges, surrogate modeling has 
emerged as a powerful alternative that provides computa-
tionally efficient approximations of expensive simulations. 
By replacing high-fidelity models with mathematically sim-
pler yet accurate predictive models, surrogate modeling 
significantly reduces the time required for design evalu-
ations while maintaining an acceptable level of accuracy. 
These models facilitate rapid decision-making, enabling 
engineers to explore a broader design space with limited 
computational resources.

Surrogate models are extensively utilized in various engi-
neering domains, particularly in multidisciplinary design 
optimization (MDO), where multiple interdependent dis-
ciplines must be optimized simultaneously. Additional-
ly, they play a crucial role in uncertainty quantification, 
helping to assess the impact of modeling errors, material 
property variations, and external disturbances on system 
performance. Sensitivity analysis is another critical area 
where surrogate models assist in identifying the most 
influential design variables, thereby guiding engineers 
toward optimal design choices. Furthermore, surrogate 
models are integrated into real-time control applications, 
where rapid response times are essential, such as in au-
tonomous vehicle navigation, adaptive structural control, 
and aerospace guidance systems.2

The application of surrogate modeling extends beyond 
traditional optimization frameworks. Recent advance-
ments in machine learning, artificial intelligence (AI), and 
data-driven modeling have further enhanced the efficiency 
and accuracy of surrogate models. Techniques such as 
Gaussian process regression (Kriging), artificial neural 
networks (ANNs), support vector machines (SVMs), and 
deep learning-based surrogates are being increasingly 
adopted to improve model performance. Additionally, 
the emergence of hybrid surrogate modeling approaches, 
which combine multiple modeling techniques, has shown 
promise in achieving higher prediction accuracy and greater 
generalizability across different engineering problems.

Despite the numerous advantages, the implementation of 
surrogate models comes with inherent challenges. These 

include the curse of dimensionality, training data selection, 
extrapolation limitations, and model validation issues. 
Addressing these challenges is crucial to ensuring the re-
liability and robustness of surrogate models in real-world 
engineering applications.3

This review aims to provide a comprehensive discussion 
on surrogate modeling in engineering design, covering 
fundamental concepts, commonly used modeling tech-
niques, and their applications across multiple domains. 
Furthermore, recent advancements in adaptive, hybrid, 
and AI-driven surrogate modeling methods are explored 
to highlight their potential in next-generation engineering 
optimization frameworks. Finally, this article discusses 
the key challenges associated with surrogate modeling 
and outlines future research directions to drive further 
innovation in this field.

Fundamental Concepts of Surrogate Modeling
Surrogate modeling is a crucial technique in engineering 
design optimization, allowing for the efficient explora-
tion of complex design spaces while significantly reducing 
computational costs. By approximating high-fidelity sim-
ulations with mathematical models, surrogate modeling 
enables faster evaluations, making it particularly useful in 
multidisciplinary design optimization (MDO), uncertainty 
quantification, sensitivity analysis, and real-time deci-
sion-making. This section provides a detailed overview of 
the fundamental principles of surrogate modeling, including 
its definition, role, and construction process.4

Definition and Role of Surrogate Models

A surrogate model, also known as a meta-model, is a math-
ematical approximation that emulates the behavior of a 
high-fidelity simulation model while requiring significantly 
less computational effort. These models are widely used 
in engineering applications where direct simulations are 
too expensive or time-consuming.

The key advantages of surrogate models include:

• Rapid evaluation of design alternatives: Engineers 
can quickly analyze different design options without 
running full-scale simulations.

• Efficient design optimization: Optimization algorithms 
can efficiently explore large and complex design spaces 
by leveraging surrogate models as proxies for expen-
sive simulations.

• Real-time decision-making: In applications requiring 
immediate responses, such as autonomous systems, 
adaptive control, and aerospace guidance, surrogate 
models enable rapid computations.

• Uncertainty quantification and sensitivity analysis: 
Surrogate models help assess the influence of design 
parameters and quantify uncertainties in predictions.
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Surrogate modeling is particularly valuable in multi-ob-
jective optimization, where multiple conflicting design 
objectives must be balanced. It is also widely used in reli-
ability-based design assessments, where failure probabil-
ities and system robustness need to be evaluated under 
uncertain conditions.5

Surrogate Model Construction Process
The development of an accurate and efficient surrogate 
model requires a structured process involving data sam-
pling, model selection, training, validation, and application 
in optimization. The major steps involved are:

Sampling Strategy

Selecting a representative set of sample points from the 
design space is crucial for constructing an effective surro-
gate model. Several strategies are commonly used:

• Latin Hypercube Sampling (LHS): Ensures uniform 
coverage of the design space and is widely used in 
engineering applications.

• Sobol Sequences: A quasi-random sampling technique 
that provides better space-filling properties than purely 
random sampling.

• Optimal Latin Hypercube Sampling (OLHS): A refine-
ment of LHS that improves sampling efficiency.

• Design of Experiments (DOE): Classical statistical tech-
niques such as Full Factorial Design, Central Composite 
Design (CCD), and Box-Behnken Design (BBD) are used 
for structured sampling.6

The choice of sampling method depends on the complexity 
of the problem and the desired accuracy of the surrogate 
model.

Model Selection and Training

Once the sample points are selected, an appropriate sur-
rogate modeling technique is chosen. Some commonly 
used models include:

• Polynomial Response Surface Models (RSM): A sim-
ple yet effective approximation technique based on 
polynomial regression.

• Kriging (Gaussian Process Regression): A probabilistic 
modeling technique that provides uncertainty quan-
tification along with predictions.

• Artificial Neural Networks (ANNs): A machine learn-
ing-based approach capable of capturing complex 
nonlinear relationships in data.

• Radial Basis Function (RBF) Networks: A popular meth-
od for interpolating complex surfaces.

• Support Vector Machines (SVMs): Particularly use-
ful in classification and regression-based surrogate 
modeling.7

The selected model is trained using the sample points, and 
its parameters are optimized to ensure accurate approxi-
mation of the underlying function.

Validation and Error Assessment

A surrogate model must be validated to ensure it accurately 
represents the high-fidelity simulation results. Several error 
assessment techniques are used:

• Root Mean Square Error (RMSE): Measures the overall 
deviation between the predicted and actual values.

• Coefficient of Determination (R²): Indicates how well 
the surrogate model explains the variance in the data.

• Cross-Validation: Involves dividing the data into train-
ing and testing sets to assess the model’s generalization 
capability.

• Leave-One-Out Cross-Validation (LOOCV): A rigorous 
technique where each sample is removed one at a 
time to evaluate model accuracy.

If the model accuracy is insufficient, additional sample 
points may be added, or a more advanced surrogate mod-
eling technique may be selected.8

Application in Optimization

Once validated, the surrogate model is integrated into an 
optimization framework. It can be used to:

• Guide heuristic optimization algorithms such as Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO), 
and Bayesian Optimization.

• Perform sensitivity analysis to identify critical design 
parameters.

• Improve real-time control strategies in adaptive sys-
tems.

The surrogate model allows for rapid iterations, significantly 
reducing the number of expensive high-fidelity simulations 
required for optimization.

Types of Surrogate Models
Several types of surrogate models exist, each with unique 
strengths and limitations. The choice of a surrogate model 
depends on the complexity of the problem, the available 
data, and computational constraints. These models approx-
imate high-fidelity simulation outputs using mathematical 
or statistical techniques, enabling rapid evaluations while 
maintaining reasonable accuracy. The most commonly 
used surrogate modeling techniques in engineering are 
discussed below.9

Polynomial Response Surface Models (RSM)

Polynomial Response Surface Models (RSM) are one of 
the earliest and simplest forms of surrogate modeling. 
They approximate the response function using low-order 
polynomial equations, typically expressed as:

y(x)=a0+a1x1+a2x2+a3x1x2+a4x12+…y(x) = a_0 + a_1x_1 
+ a_2x_2 + a_3x_1x_2 + a_4x_1^2 + \dotsy(x)=a0 +a1 x1 
+a2 x2 +a3 x1 x2 +a4 x12 +… 



26
Kumar R
J. Engr. Desg. Anal. 2025; 8(1)

ISSN: 2582-5607 

where x1,x2,…x_1, x_2, \dotsx1 ,x2 ,… represent design 
variables, and a0,a1,a2,…a_0, a_1, a_2, \dotsa0 ,a1 ,a2 
,… are regression coefficients determined through least 
squares fitting.

Advantages:

• Computationally efficient, making them ideal for low-
cost surrogate modeling.

• Well-suited for low-dimensional problems with smooth 
response functions.

• Provides explicit mathematical equations that facilitate 
design interpretation.

Limitations:

• Poor accuracy for highly nonlinear or high-dimensional 
problems.

• The choice of polynomial order significantly affects 
model performance—higher-order polynomials may 
lead to overfitting.

RSM is commonly used in engineering applications involving 
design of experiments (DOE), uncertainty quantification, 
and gradient-based optimization.

Kriging Models (Gaussian Process Regression)

Kriging, also known as Gaussian Process Regression (GPR), 
is a probabilistic interpolation technique that models the 
response as a stochastic Gaussian process. It provides both 
a prediction and an uncertainty estimate at each design 
point[10]. The Kriging model is defined as:

y(x)=μ+Z(x)y(x) = \mu + Z(x)y(x)=μ+Z(x) 

where:

• μ\muμ is the global mean response.
• Z(x)Z(x)Z(x) is a Gaussian process with a covariance 

function that captures spatial correlations.

Kriging is particularly effective in modeling highly nonlinear 
and expensive-to-evaluate functions with limited sample 
points. The hyperparameters of the Kriging model, such as 
correlation lengths, are typically optimized using maximum 
likelihood estimation (MLE).

Advantages:

• Provides an estimate of prediction uncertainty, making 
it useful for adaptive sampling strategies.

• Highly accurate for smooth and continuous response 
functions.

• Effective for small datasets where data collection is 
costly.

Limitations:

• Computationally expensive for large-scale problems 
due to matrix inversion operations.

•	 Performance deteriorates for high-dimensional design 
spaces.11

Kriging is widely applied in structural optimization, reliabil-
ity-based design, and multidisciplinary design optimization 
(MDO).

Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are powerful surrogate 
models that approximate complex nonlinear relationships 
using interconnected layers of artificial neurons. ANNs 
consist of input layers, hidden layers, and output layers, 
where each neuron applies an activation function such as 
ReLU, sigmoid, or tanh.

Advantages:

• High accuracy for highly nonlinear, high-dimensional 
problems.

• Scalability to complex engineering systems with mul-
tiple input-output relationships.

• Generalization capability when trained with sufficient 
data, making them suitable for surrogate-based opti-
mization.

Limitations:

• Require a large dataset for effective training, which 
may be impractical for expensive simulations.

• Computationally intensive, especially during training 
due to backpropagation and gradient-based learning.

• Hyperparameter tuning (e.g., number of layers, neu-
rons, learning rate) is crucial for achieving good per-
formance.12

ANNs have been successfully implemented in computa-
tional fluid dynamics (CFD), structural health monitoring, 
autonomous systems, and real-time predictive modeling.

Radial Basis Function (RBF) Models

Radial Basis Function (RBF) models use basis functions 
centered around selected sample points to interpolate the 
response surface. The response function is represented as:

y(x)=∑wiϕ(||x−xi||)y(x) = \sum w_i \phi(||x - x_i||)y(x)=∑wi 
ϕ(||x−xi ||) 

where:

• wiw_iwi  are the weights assigned to basis functions.
• ϕ(||x−xi||)\phi(||x - x_i||)ϕ(||x−xi ||) is a radial basis 

function, such as Gaussian, multiquadric, or inverse 
multiquadric functions.

Advantages:

• Effective for scattered data approximation in multidi-
mensional design spaces.

• Provides smooth interpolation with continuous gradi-
ents, making it useful for optimization.

•	 Does not require predefined polynomial structures, 
making it more flexible than RSM.
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Limitations:

• Sensitivity to basis function parameters, requiring 
careful tuning.

• Computational cost increases with the number of 
sample points.

• May struggle with extrapolation beyond the sampled 
region.13

RBF models are extensively used in aeroelasticity, structural 
dynamics, and shape optimization.

Support Vector Regression (SVR)

Support Vector Regression (SVR) is a machine learn-
ing-based surrogate modeling approach that constructs a 
regression model using Support Vector Machines (SVMs). 
Unlike conventional regression techniques, SVR seeks to 
minimize prediction error while ensuring robust general-
ization.

The SVR model is formulated as:

min||w,ξ,ξ∗12∗∗w∗∗2+C∑(ξ+ξ∗)\min_{w, \xi, \xi^*} \
frac{1}{2} ||w||^2 + C \sum (\xi + \xi^*)w,ξ,ξ∗min 21 
∗∗w∗2+C∑(ξ+ξ∗) 

subject to:

yi−(w∗xi+b)≤ϵ+ξy_i - (w \cdot x_i + b) \leq \epsilon + \xiyi 
−(w∗xi +b)≤ϵ+ξ (w\∗xi+b)−yi≤ϵ+∗(w \cdot x_i + b) - y_i \leq 
\epsilon + \xi^*(∗xi +b)−yi ≤ϵ+ξ∗ 

where:

• CCC controls the trade-off between model complexity 
and prediction accuracy.

• ϵ\epsilonϵ defines an insensitive zone, within which 
errors are ignored.

• ξ,ξ∗\xi, \xi^*ξ,ξ∗are slack variables to handle non-lin-
earity.

Advantages:

• Effective for high-dimensional data, making it suitable 
for complex design problems.

Model Type Accuracy Computational Cost Strengths Weaknesses

Polynomial RSM Moderate Low Fast, interpretable Struggles with high 
nonlinearity

Kriging (GPR) High High Uncertainty quantification Computationally expensive

ANNs Very 
High Very High Handles complex problems Needs large datasets, tuning 

required

RBF Models High Moderate Flexible, smooth 
interpolation

Sensitive to parameter 
tuning

SVR High High Generalizes well, robust Expensive for large datasets

Table 1.Comparison of Surrogate Models

• Robust to noise in training data, ensuring stable per-
formance.

• Generalizes well, preventing overfitting compared to 
ANN-based models.14

Limitations:

• Computationally intensive for large datasets due to 
quadratic programming optimization.

•	 Performance depends on kernel selection (e.g., linear, 
polynomial, radial basis function).

SVR is widely used in aerodynamic shape optimization, 
robotics, and reliability engineering. Table 1 presents the 
Comparison of Surrogate Models.

Applications of Surrogate Modeling in 
Engineering
Aerospace Engineering

• Optimization of airfoil shapes for improved aerodynamic 
performance

• Propulsion system design for fuel efficiency optimization
• Surrogate models for multidisciplinary aircraft design 

optimization

Automotive Engineering

• Vehicle crashworthiness optimization using Kriging-
based surrogates

• Reduction of drag in automotive aerodynamics
• Battery performance modeling for electric vehicles

Structural Engineering

• Optimization of bridge and building structures 
underseismic loads

• Topology optimization for lightweight material design
• Fatigue and durability analysis of structural components

Biomedical Engineering

• Surrogate models for patient-specific medical implants
• Finite element analysis of bone and tissue mechanics
• Drug delivery system optimization using machine 

learning surrogates
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Challenges and Future Research Directions
Challenges in Surrogate Modeling

• Curse of Dimensionality: As the number of input 
variables increases, surrogate models struggle to 
maintain accuracy.

• Computational Cost of Training: High-fidelity 
simulations are required for model training, increasing 
computational expenses.

• Extrapolation Limitations: Most surrogate models 
perform well within the training region but fail to 
generalize beyond it.

• Uncertainty Quantification: Accurately estimating 
and propagating uncertainties remains a challenge in 
surrogate-based optimization.

Future Research Directions

• Hybrid Surrogate Models: Combining multiple 
surrogate models (e.g., Kriging-ANN hybrids) to improve 
accuracy and efficiency.

• Adaptive Surrogate Modeling: Dynamically refining 
surrogate models based on optimization progress.

• Integration with AI and Deep Learning: Utilizing deep 
learning architectures for improved generalization and 
automation.

• Quantum Computing for Surrogate Modeling: Exploring 
quantum algorithms for solving high-dimensional design 
optimization problems.

Conclusion
Surrogate modeling has become an indispensable tool in 
modern engineering design, enabling efficient optimization 
and rapid decision-making. By leveraging advanced 
techniques such as Kriging, Artificial Neural Networks (ANNs), 
Radial Basis Function (RBF) models, and hybrid modeling 
approaches, researchers can tackle complex, high-fidelity 
simulations while significantly reducing computational costs. 
These models serve as efficient alternatives to traditional 
simulations, allowing engineers to explore vast design 
spaces, conduct uncertainty quantification, and improve 
system performance without the burden of excessive 
computational resources.

The increasing integration of machine learning, deep 
learning, and artificial intelligence (AI)-driven methods into 
surrogate modeling frameworks is further revolutionizing 
optimization processes. The ability of AI-based models to 
learn from data, adaptively refine surrogate approximations, 
and provide real-time predictions makes them highly 
valuable in fields such as aerospace engineering, automotive 
design, structural mechanics, and biomedical applications. 
Moreover, the development of multi-fidelity modeling 
approaches, which combine low- and high-fidelity 
simulations, is proving to be a game-changer in reducing 
computational expense while maintaining high accuracy.

However, despite significant advancements, challenges 
remain in model accuracy, generalization capability, and 
robustness. Future research should focus on:

• Adaptive AI-driven surrogate modeling frameworks that 
dynamically update models based on real-time data.

• Hybrid surrogate models that intelligently combine 
multiple modeling techniques to enhance predictive 
accuracy.

• Uncertainty quantification and reliability assessment 
to ensure surrogate models provide robust and 
trustworthy predictions.

• High-dimensional optimization methods that effectively 
handle large-scale, complex design problems.

• Automation and integration with digital twins to enable 
real-time decision-making in smart manufacturing and 
cyber-physical systems.

As computational power continues to evolve and new data-
driven techniques emerge, surrogate modeling will play an 
even greater role in engineering innovation, driving the 
next generation of optimized, high-performance systems. 
The synergy between AI, high-performance computing, and 
surrogate modeling holds immense potential for shaping 
the future of engineering design, making it more efficient, 
cost-effective, and intelligent.
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