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Abstract 

Numerical Methods plays very crucial role as for as gas dynamics is concern. 
This work performs the numerical convergence studies of different numerical 
methods used for gas dynamics over a range of parameters and analyze the 
accuracy of the approach applied to gas dynamics. 
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Euler Equations 

In this section we consider the time-dependent 
Euler equations. These are a system of non-linear 
hyperbolic conservation laws that govern the 
dynamics of a compressible material, such as 
gases or liquids at high pressures, for which the 
effects of body forces: viscous stresses and heat 
flux are neglected. There is some freedom in 
choosing a set of variables to describe the flow 
under consideration. A possible choice is the so 
called primitive variables or physical variables, 
namely, p(x, y, z, t) = density or mass density, p(x. 
y, z ,t ) = pressure, u(x, y , z , t ) = 2-component of 
velocity, v( x ,y , z . t ) =y-component of velocity, 
w ( z , y, z , t) = z-component of velocity. The 
velocity vector is V = (u, v, w).A n alternative 
choice is provided by the so called conserved 
variables. These are the mass density p: the z-
momentum component pu, the y-momentum 
component pv. the z-momentum component pu, 
and the total energy per unit mass E. Physically, 
these conserved quantities result naturally from 
the application of the fundamental laws of 
conservation of mass, Yen-ton‘s Second Lam and 
the law of conservation of energy. 
Computationally, there are some advantages in 
expressing the governing equations in terms of the 
conserved variables.  

Conservation-law form 

The five governing conservation laws are: 

( ) ( ) ( ) 0t x y zu u u            (1)                        

2( ) ( ) ( ) ( ) 0t x y zu u p uv uw         (2) 

2( ) ( ) ( ) ( ) 0t x y zv uv v p vw         (3) 

2( ) ( ) ( ) ( ) 0t x y zw uw vw w p           (4) 

[ ( )] [ ( )] [ ( )] 0t x y zE u E p v E p w E p        (5) 

E is the total energy per unit volume  

21( V )
2

E e     (6) 

Where     21 1V V.V
2 2

 = 2 2 21 ( )
2

u v w   

½ V2 is the specific kinetic energy and e is the 
specific internal energy. One generally refers to 
the full system as the Euler equations. The 
conservation laws can be expressed in a very 
compact notation by defining a column vector U 
of conserved variables and flux vectors F(U), 
G(U), H(U) in the x, y and z directions, 
respectively. The equations now read 

t ( ) ( ) ( ) 0x y z   U F U G U H U          (7) 
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It is important to note that F = F(U), G = G(U), H 
= H(U); that is, the flux vectors are to be regarded 
as functions of the conserved variable vector U. 
Any set of PDEs written in the form is called a 
system of conservation laws. As partial derivatives 
are involved we say that is a system of 
conservation laws in differential form. The 
differential formulation assumes smooth solutions, 
that is, partial derivatives are assumed to exist. 
There are other ways of expressing conservation 
laws in which the smoothness assumption is 
relaxed to include discontinuous solutions. 

One dimensional Euler equations in 
conservative formulation 

The conservative formulation of the Euler 
equations, in differential form, is 

( ) 0x tU F U  (9) 

Here U and ( )F U  are the vectors of conservative 
variables and fluxes given respectively by  

1 1
2

2 2

3 3

,
( )

u f u
u u F f u p
u E f u E p

 
 

       
                  
              

U (10) 

Here ρ is density, p is pressure, u is particle 
velocity, E is Total energy per unit volume  

21( )
2

E u e   (11) 

Where e is the specific internal energy given by a 
caloric equation of state (EOS) 

( , )e e p    (12) 

For ideal gases one has simple expression 

( , )
( 1)

pe e p
 

 


   (13) 

With p vc c   denoting the ratio of specific 
heats from EOS (13) and now we write the sound 
speed a  as  

2
p

pa p e e



    (14) 

The conservation laws can be written in quasi 
linear form  

( ) 0x tU A U U   (15) 

Where the coefficient matrix ( )A U  is the 
Jacobian matrix 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

( )
f u f u f u
f u f u f u
f u f u f u

      
          

       

FA U
U

(16) 

(8) 
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 
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 

FA U
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  (17) 

First we express all components fi of the flux 
vector F in terms of the components u, of the 
vector U of conserved variables, namely u1=ρ, u2= 
ρu, u3= E. Obviously f1 = u2=ρu. To find f2 and f3 
we first need to express the pressure p in terms of 
the conserved variables. From (11) and (13) we 
find 

         
2

3 2 1
1( 1)[ ( )]
2

p u u u    

The flux vector can be written as:  

2
1 2

2
2 3

1
3 3

2 2
3 2

1 1

1( ) (3 ) ( 1)
2

1 ( 1)
2
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f

uf u
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                 
  
  

F U

By direct evaluation of all partial derivatives we 
arrive at sought result  

Now we write the jacobian matrix in terms of the 
sound speed a  and velocity u 

2

2 2
3 2

0 1 0
1( ) ( 3)( ) (3 )( ) 1
2

1 3 2( 2)( ) ( )
2 1 2 1

u u

a u au u u

  


 

 

 
 
 

         
      

FA U
U

             (18) 

The Euler equations (9)-(10) with the ideal-gas EOS (13) satisfy the homogeneity property  

F(U) = A(U)U  (19) 

The proof of this property is immediate. By 
multiplying the Jacobian matrix (18) by the vector 
U in (10) we identically reproduce the vector F(U) 
of fluxes in (10). 

The Eigen values of the jacobian matrix A are 
obtained from the expression (18) for A and the 
characteristic polynomial  

| | 0A I  Lead to  
2 2 2( )( )[2 )] ( )[ ( 1) ( 1) ]u u u u u a u u                     

Where  

2 21 1( )(1 ) ( 1) [(1 2 ) ]
2 2

u u u u               
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Manipulations show that Δ also contains the 
common factor ( u  ), which implies that 

2 u  is a root of the characteristic polynomial 
and thus an eigen values of A. After cancelling 

u  the remaining terms give 

2 2 22 0u u a      

With real roots  

1 2 3, ,u a u u a          

Therefore the eigen values are:

1 2 3, ,u a u u a        as claimed to find 
the right eigenvectors for a vector 

1 2 3[ , , ]TK k k k  such that  

AK K  

Substituting λ=λ I in turn, solving for the 
components of vector K and selecting appropriate 
values for the scaling factors we get the desired 
eigenvectors.  

The eigen values are all real and the eigenvectors 
K(1), K(2), K(3)forma complete set of linearly 
independent eigenvectors. We have thus proved 
that the time-dependent, one-dimensional Euler 
equations for ideal gases are hyperbolic. In fact 
these equations are strictly hyperbolic, because the 
eigen values are all real and distinct, as long as the 
sound speed a remains positive.    

Shock Capturing Methods 

In computational fluid dynamics, shock-capturing 
methods are a class of techniques for computing in 
viscid flows with shock waves. Computation of 
flow through shock waves is an extremely difficult 
task because such flows result in sharp, 
discontinuous changes in flow variables pressure, 
temperature, density, and velocity across the 
shock. 

In shock-capturing approach the governing 
equations of in viscid flows (Euler equations) are 
cast in conservation form and any shock waves or 
discontinuities are computed as part of the 
solution. Here, no special treatment is employed to 
take care of the shocks themselves. This is in 
contrast to the shock-fitting method, where shock 
waves are explicitly introduced in the solution 
using appropriate shock relations (Rankine - 
Hugoniot relations). 

The shock capturing methods are relatively simple 
compared to the more elaborate shock fitting 
methods. However, the shock waves predicted by 
shock-capturing methods are generally not sharp 
and smear over several grid points. Also, classical 
shock-capturing methods have the disadvantages 
that unphysical oscillations (Gibbs phenomenon) 
may develop in the vicinity of strong shocks. 

Classical and modern shock capturing 
methods 

From an historical point of view, shock-capturing 
methods can be classified into two general 
categories: viz., classical methods and modern 
shock capturing methods (also called high-
resolution schemes). Modern shock-capturing 
methods are generally upwind based in contrast to 
classical symmetric or central discretization. 
Upwind-type differencing schemes attempt to 
discretize hyperbolic partial differential equations 
by using differencing biased in the direction 
determined by the sign of the characteristic 
speeds. On the other hand, symmetric or central 
schemes do not consider any information about the 
wave propagation in the discretization. 

No matter what type of shock-capturing scheme is 
used, a stable calculation in presence of shock 
waves requires a certain amount of numerical 
dissipation, in order to avoid the formation of 
unphysical numerical oscillations. In the case of 
classical shock-capturing methods, numerical 
dissipation terms are usually linear and the same 
amount is uniformly applied at all grid points. 
Classical shock-capturing methods only exhibit 
accurate results in the case of smooth and weak-
shock solution, but when strong shock waves are 
present in the solution, non-linear instabilities and 
oscillations can arise across discontinuities. 
Modern shock-capturing methods have, however, 
a non-linear numerical dissipation, with an 
automatic feedback mechanism which adjusts the 
amount of dissipation in any cell of the mesh, in 
accord to the gradients in the solution. These 
schemes have proven to be stable and accurate 
even for problems containing strong shock waves. 

Some of the well-known classical shock-capturing 
methods include the MacCormack method (uses a 
discretization scheme for the numerical solution of 
hyperbolic partial differential equations), Lax–
Wendroff method (based on finite differences, 
uses a numerical method for the solution of 
hyperbolic partial differential equations), and 
Beam-Warming method. Examples of modern 
shock-capturing schemes include, higher order 
Total Variation Diminishing (TVD) schemes first 
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proposed by Harten, Flux-Corrected Transport 
scheme introduced by Boris and Book, Monotonic 
Upstream-centered Schemes for Conservation 
Laws (MUSCL) based on Godunov approach and 
introduced by Van Leer, various Essentially Non-
Oscillatory schemes (ENO) proposed by Harten et 
al., and Piecewise Parabolic Method (PPM) 
proposed by Woodward and Colella. Another 
important class of high resolution schemes 
belongs to the approximate Riemann solvers 
proposed by Roe and by Osher. The schemes 
proposed by Jameson and Baker, where linear 
numerical dissipation terms depend on non-linear 
switch functions, fall in between the classical and 
modern shock-capturing methods. 

Flux -Vector Splitting Schemes (FVS) 

Classical shock-capturing methods use central 
differences. The underlying idea behind flux-
vector splitting is to split the flux contributions 
into positive and negative components, where 
splitting is based on the eigen value structure of 

the system or some other appropriately assumed 
behavior. In presenting these methods, the view is 
taken that the fundamental problem that must be 
solved is to determine the correct flux at the 
boundaries of the control-volume faces. 
Interpretation of the numerical methods in terms 
of the control-volume surface fluxes for the 
various methods may also be considered in the 
sense of finite-difference schemes.  

To set the stage for the study of solutions of the 
Euler equation, consider a control volume as 
shown in Fig. 1. As previously discussed, the 
conservative form of the governing equations is 
integrated over the control volume. The 2-D Euler 
equations are given in the conservative form: 

0
t x y

  
  

  
U E F

  (20) 

where the conservative variables are defined in the 
usual way. Integrating this equation over the 
control volume yields the form.

 

 
Figure 1.Control volume for Euler equations 

U E F( ) 0
tv v

dv dv
x y 

  
  

       (21) 

Applying Green’s Theorem (Taylor, 1955) to the 
second term converts this to a surface integral of 
the form 

U (E F ) 0
tv s

dv dy dx



  

 �  (22) 

where the subscript on the integral around the 
boundary is denoted by the small s. In discrete 
form, the integration results in 

U (E y F ) 0
t cellfaces

v x
     

                                         

(23) 

where the δv represents the volume of the cell and 
the Δx and Δy are the arc lengths of the cell sides 
for the 2-D case. The evaluation of the sum of the 
fluxes on the boundary requires that the flux 
values, i.e., the values of E and F, be known on 
the surface of the control volume. The evaluation 
of the flux terms on the control volume surfaces is 
the fundamental problem in the development of 
methods for solving the Euler equations. 
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Steger –Warming Flux Vector Splitting 

Steger and Warming (1979) developed an implicit 
algorithm using a splitting of E and F in the 
governing equations based on the wave speed 
splitting. In splitting the flux terms, the flux is 
assumed to be composed of a positive and a 
negative component. For illustration, consider a 1-
D problem where the Euler system under 
investigation has the form 

0
t x

 
 

 
U E

  (24) 

This system can also be written in the form 

  0A
t x

 
 

 
U U

 (25) 

Where [A]is the Jacobian E U this system is 
hyperbolic if a similarity transformation exists so 
that 

      1T A T    (26) 

where [λ] is a diagonal matrix of real Eigen values 

of [ A ]and   1T 
is the matrix whose rows are the 

left eigenvectors of [ A ]taken in order. 

( )p f e   (27) 

Where e is the internal energy, then the flux vector 
E(U) is a homogeneous function of degree one in 
U, which means that 

( ) ( ) E U E U  (28) 

for any α. This permits the flux vectors E and F of 
the Euler equations to be written in the form 

 AE U   (29) 

We can use this property and the fact that the 
system is hyperbolic to achieve the desired split 
flux form. 

Combining equations (26) and (29) E may be 
written as 

      1A T T  E U U  (30) 

The matrix of Eigen values is divided into two 
matrices, one with only positive elements and the 
other with negative elements. We write the [A] 
matrix as 

1 1[ ] [ ] [ ] [ ][ ][ ] [ ][ ][ ]A A A T T T T           (31) 

And define   

  E E E  (32) 

So that [ ]A E U [ ]A E U  (33) 

The original conservation-law form written using 
the split-flux notation becomes 

0
t x x

   
  

  
U E E

  (34) 

where the plus and minus signs indicate that the 
flux components are associated with wave 
propagation in the positive and negative 
directions, respectively. The key point is that the 
flux vector E can be split into a positive part and a 
negative part, each associated with the signal 
propagation directions. The eigen values of 

 E U are not the same as   , but the correct 
sign is preserved. For the 1-D case, the eigen 
values of [A] are the familiar streamline and signal 
propagation terms written as 

1

2

3

u
u a
u a






 
 

 

For the supersonic case, with u positive, λ+= λ and 
λ-= 0. For the subsonic case, both λ+ and λ- are 
nonzero. For subsonic flow 

[ ]
0

u
u a

 
   
  

   (35) 

0
[ ] 0

u a


 
   
  

   (36) 

The associated split-flux terms are as follows:  
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2 2

1
1 ( )
2

1 1 3( )
2 2 1

u a u a

u a a









 
 
 
   
 

        

E  (37) 

2 2

3 3 2

(2 1)
1 2( 1) ( )
2

1 1 3( 1) ( ) ( )
2 2 1

u u a

u u a a u a












 

 
 
 

      
      

  

E E E  (38) 

A first-order upwind scheme is easily constructed 
with this split-flux idea. A simple integration of 
the equations for a 1-D problem may be written 

1
1/ 2 1/ 2( )n n

i i i i
t
x


 


  


U U E E  (39) 

In this setting, the cell-face values of the flux are 
composed of both + and -components according to 
the splitting, i.e. 

1/ 2 1/ 2( )i i
 

  E E E  (40) 

For a first-order calculation the flux components 
may be evaluated with an extrapolation consistent 
for the MUSCL scheme, where the primitive 
variables were extrapolated to the cell faces. In the 
Steger-Warming splitting, the fluxes are 
extrapolated to the cell faces. However, the 
MUSCL approach with primitive variables may 
also be used in this splitting. In the simplest case, 
the values of 1/ 2i


E are set equal to i

E , and the 

values of 1/ 2i

E are set equal to 1i


E This 

produces a numerical algorithm of the form 

1
1/ 2 1/ 2[( ) ( ) ]n n

i i i i
t
x

    
 


    


U U E E E E  (41) 

This is the finite-difference form of Eq. (41) when 
the E+ derivative is backward differenced and the 
E- term is forward differenced. Based on earlier 
discussions, the equivalence of the finite-
difference and the finite-volume formulations is 
clear.      

The use of split-flux techniques for shock-
capturing applications produces better results than 
central-difference methods, but some problems 
remain even for this formulation. Using the 
Steger-Warming splitting, the shock waves are 
well represented, but some oscillations are 
produced when a sonic condition is encountered. 
The problem is that the components of the split 
flux are not continuously differentiable at sonic 

and stagnation points. Figure 2 shows the split 
mass flux behavior as the sonic region is traversed. 
Steger and Warming (1981) attempted to eliminate 
this problem by modifying the eigen values when 
they change signs to be of the form  

2 2

2
  

  
  (42) 

where ε is viewed as a blending function to ensure 
a smooth transition when the λ’s change sign. This 
modification was only moderately successful and 
more appropriate schemes employing flux-vector 
splitting evolved later. 
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Figure 2.Split mass flux using steger-warming splitting 

Van Leer Flux Vector splitting 

Van Leer (1982) suggested a second type of flux 
vector splitting, Unlike the Steger- Warming flux 
vector splitting. Van Leer’s flux vector splitting is 
not based on wave speed splitting sonic points are 
natural flux splitting points; at the very least sonic 
points require special consideration to avoid 
numerical problems. For the Euler equations, the 
Mach number M indicates sonic points; in 
particular, sonic points occur when M = u/a =0 
1 thus to help address sonic points. Van Leer bases 
his Flux Vector splitting on Mach number 
splitting. Van Leer flux splitting takes a logical 
approach to the problem of flux calculation.  The 
flux vector is analyzed to determine its 
eigenvectors, which are the wave speeds of the 
equation set for the Euler equations.  For the quasi 
1-D equation set, there are three speeds: [u+a, u, 

and u-a].  The flux is split into the respective 
contributions from each wave speed, with a 
"positive" or "left" flux component coming from 
the positive wave speeds and a "negative" or 
"right" flux component coming from the negative 
wave speeds.  If the flow is supersonic, only the 
flux component from the upstream direction is 
non-zero.  For subsonic flow, both the left and 
right flux components are non-zero.  The left flux 
is calculated from conservative variables 
interpolated using a left biased stencil, while the 
right flux is calculated from conservative variables 
interpolated using a right biased stencil.  In this 
way, each flux component is correctly calculated 
from known cell points which would affect the 
boundary. 

The flux vector for the Euler equations can be 
written in terms of the Mach number as follows: 

1
2 2

2

3 23

f
f = f ( 1)

f 1 1( )
2 1

aM
a M

a M M


 




 
               

  

 (43) 

Notice that the mass flux f1 Depends linearly on 
M, then the mass flux can be split much like the 
flux function for the linear advection equation In 

particular the linear function M can be split into 
two quadratic functions as follows: 

2

0 1
1( ) 1 1

2
1

M
MM M

M M



 
    




 (44) 
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2

1
1( ) 1 1

2
0 1

M M
MM M

M



 
     




 (45) 

Notice that M+ + M- = M for |M|1 the same true for |M| < 1 which is easily proven as follows  

2 22 1 2 1
4 4

M M M MM M M     
     

Notice that M   and its first derivative are 
continuous. Unfortunately, the second derivative is 
highly discontinuous at sonic points 1M   . 
This could be prevented by splitting the linear flux 
into two cubic pieces-the higher the order 
polynomials in the splitting the more degrees of 
freedom there are ensure continuity in the 
derivatives. Mach number splitting (45) implies 
the following mass splitting.  

1f aM    (46) 

The momentum flux f2 depends on 2 1M  . By 
the same principles as before; this quadratic is 
split into two cubics where the cubics ensure 
continuity of split momentum of the split 
momentum flux and its derivative. Omitting the 
details the result is:  

2 2

2

0 1
1( 1) ( ) (( 1) 2) 1 1

2
1 1

M
MM M M

M M

 





 
       


 

  (47) 

2 2

2

0 1
1( 1) ( ) (( 1) 2) 1 1

2
1 1

M
MM M M

M M

 





 
        


 

  (48) 

This simplifies the following momentum flux splitting: 

2
2

2 ( 1)af M



     (49) 

2 1

2

0 1
1 (( 1) 2 ) 1 1

1

M

f f u a M

f M




 

  

     

 

  (50) 

2

2 1

1
1 (( 1) 2 ) 1 1

0 1

f M

f f u a M

M




 

  

     

 

  (51) 

Momentum flux includes a pressure term, by 
standard convention; then the above momentum 

flux splitting implicitly involves a pressure 
splitting. Van Leer splits the pressure as follows: 
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2

0 1
1( ) (2 ) 1 1

2
1 1

M
Mp p M M

M



 
     




  (52) 

2

1 1
1( ) (2 ) 1 1

2
0 1

M
Mp p M M

M



 
      




  (53) 

Finally, the energy flux depends on the cubic 21 1( )
2 1

M M





, which is split into two quadratics. 

2
3 1

3

0 1
1 (( 1) 2 ) 1 1

2( 1)( 1)
1

M

f f u a M

f M


 

 

  

       
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 (54) 

3

2
3 1

1
1 (( 1) 2 ) 1 1

2( 1)( 1)
0 1

f M

f f u a M

M


 

 

  

     

 
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 (55) 

To summarize from discussed equations, notice that  

2

2

1
( 1) 2( 1)

4
(( 1) 2 )
2( 1)( 1)

a u af M

u a

 



 



 
 
 
  

    
 
  
 

   

  (56) 

 

For |M|<1 other wise, f+ =f and f- =0 for 1M   , 
and f- =f and f+ = 0 for 1M  Like the Steger-
Warming flux vector splitting, Van Leer flux 
vector splitting correctly attributes all of the flux 
to right running waves for left-running supersonic 
flow.  

HLL and HLLC Riemann solvers 

Computing the Godunov flux, Harten, Lax and 
van Leer presented a novel approach for solving 
the Riemann problem approximately. The 
resulting Riemann solvers have become known as 

HLL Riemann solvers. In this approach an 
approximation for the intercell numerical flux is 
obtained directly. The central idea is to assume a 
wave configuration for the solution that consists of 
two waves separating three constant states. 
Assuming that the wave speeds are given by some 
algorithm, application of the integral form of the 
conservation laws gives a closed-form, 
approximate expression for the flux. The approach 
produced practical schemes after the contributions 
of Davis and Einfeldt who independently proposed 
various ways of computing the wave speeds 
required to completely determine the intercell flux. 
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The resulting HLL Riemann solvers form the 
bases of very efficient and robust approximate 
Godunov-type methods. One difficulty with these 
schemes, however, is the assumption of a two-
wave configuration. This is correct only for 
hyperbolic systems of two equations, such as the 
one-dimensional shallow water equations. For 
larger systems, such as the Euler equations or the 
split two-dimensional shallow water equations for 
example, the two-wave assumption is incorrect. 
As a consequence the resolution of physical 
features such as contact surfaces, shear waves and 
material interfaces, can be very inaccurate. For the 
limiting case in which these features are stationary 
relative to the mesh, the resulting numerical 
smearing is unacceptable. In view of these 
shortcomings of the HLL approach, a modification 
called the HLLC Riemann solver (C stands for 
Contact) was put forward by Toro, Spruce and 
Speares. In spite of the limited experience 
available in using the HLLC scheme, the evidence 
is that this appears to offer a useful approximate 
Riemann solver for practical applications. Batten, 
Leschziner and Goldberg have recently proposed 
implicit versions of the HLLC Riemann solver, 
and have applied the scheme to turbulent flows. 
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