A Survey on Copper Doping Zno Thin Films

Authors

  • Deepak Chaudhary Assistant professor
  • Tarun Kumar Lecturer,

Keywords:

XRD, ZnO, Diffraction, Resistivity

Abstract

The outcome of copper doping ZnO thin films, placed by means of
a sol-gel dip-coating process, on the structural, optical and ethanol
vapour-sensing possessions, was observed. The variety of the doping
content is 0 wt. %–5 wt. % Cu/Zn and the films’ assets were deliberate
using x-ray diffraction, scanning electron microscopy and a UV–vis
spectrophotometer.
Zinc oxide is one of the most important n-type semi-conductors
intensively utilized in solar cells, transparent conducting electrodes and
opto-electronic devices. The X-Ray diffraction shows the polycrystalline
hexagonal quartzite structure exhibiting degradation in crystallinity of
elaborated films with increasing Al doping concentration. This outcome
is reflected on optical and electrical proprieties of films. Certainly, the
examples contemporary a low optical transmittance level and the
band gap values amid 3.17 eV and 3.20 eV. Regarding the electrical
properties, a diminution in the attentiveness of free charges transporters
is experiential as well as a lessening in resistivity.

Author Biographies

Deepak Chaudhary, Assistant professor

Department of Applied Science, Institute of Engineering & Technology, Alwar .

Tarun Kumar, Lecturer,

Government Polytechnic Alapur, Badun

References

Kumar M, Jeonga H, Kumarb A et al. Magnetron

sputtered high performance Y-doped ZnO thin film

transistors fabricated at room temperature. in Materials

Science in Semiconductor Processing 2017; 71: 204-

Elesvier.

Kaur R, Singh AV, Mehra RM. Structural, electrical and

optical properties of sol–gel derived yttrium doped ZnO

films”, phys. stat. sol. (a) 2005; 202(6)vbg: 1053–1059,

WILEY-VCH Verlag GmbH & Co. KGaA.

Kumar A, Kumar M, Singh BP. Fabrication and

characterization of magnetron sputtered arsenic

doped p-typeZnO epitaxial thin films. in International

Journal Applied Surface Science 2010; 256; 7200-7203,

APSUSC202181–4, Elesvier.

Ezenwa IA. Synthesis and Optical Characterization of

Zinc Oxide Thin Film. in Research Journal of Chemical

Sciences 2012; 2(3): 26-30, ISSN 2231-606X.

Sallet V, Thiandoume C, Rommeluere JF et al. Mater.

Lett. 2002; 53; 126.

Dua G, Wanga J, Wanga X ET AL. R.P.H. Chang,Vacuum

; 69: 473.

Sekiguchi T, Haga K, Inaba K. Journal of Crystal Growth

/215 2000; 68.

Kim KYK, Niki S, Oh JY et al. Journal of applied Physics

; 97: 066103.

Suchea M, Christoulakis S, Moschovis K et al. Thin Solid

Films 2006; 515: 551.

Das R, Adhikary K, Ray S. Japanese Journal of Applied

Physics 2008; 47: 1501.

Xiao YB, Kong SM, Kim EH et al. Sol. Ener. Mat. & Solar

Cells 2011; 95: 264.

Choopun S, Vispute RD. Noch, Balsamo A et al. Appl.

Phys. Lett. 1999; 75: 3947.

Singh AV, Mehra RM, Buthrath N et al. J. Appl. Phys.

; 90: 5661.

Matsubara K, Fons P, Iwata K et al. Thin Solid Films

; 422: 176.

Craciun V, Elders J, Gardeniers JGE. Appl Phys Lett

; 65: 2963.

Hsiao KC, Liao SC, Chen YJ. Mat Sci and Eng: 2007; A

: 71.

Xu J, Wang H, Yang L et al. Tingting Zhang Mat. Sci.

and Eng.B 2010; 167; 182.

Gómez-Pozos H, Maldonado A, d la L M. Olvera,

Materials Letters 2007; 61: 1460.

Reshchikov MA, A vrutin V, Izyumskaya N et al. Morkoc

Physica B 2007; 401-402: 374.

Kluth O, Rech B, Wagner H. 17th European Photovoltaic

Solar Energy Conference, Germany October 22-26

(2001).

Aranocich JA, Golmayo D, Fahren et al. J.Appl.Phys

; 51; 4260.

Tiwari AN, Pandya DK, Chopra KL. Solar cells 1987;

: 263.

Schulze K, Maenning B, leo B et al. Appl. Phys. Lett.

; 91; 073521.

Myong SY, Sriprabha K, Miyajima S et al. Appl. Phy.

Lett. 2007; 90: 263509.

Dittrich T, Kieven D, Belaidi A et al. J.Tornow,

K.Schwarzburg and M.Ch.LuxChapter Steiner,J. of appl.

Phys. 2009; 105: 034509.

Campa A, Krc J, Malmstrom J et al. Thin Solid Films

; 515: 5968.

Ke L, Dolmanan SB, Shen L. Promoda kumara Pallathadk

and Zheng Zhnag. Sol. Ener. Mat. & Solar cells 2010;

: 323.

Jeong I-S, Kim J-H, Im S. Appl. Phys. Lett. 2003; 83: 2946.

Ohta H, Mizoguchi H, Hirano M et al. Appl. Phys. Lett.

; 82: 823.

Kim HY, Kim JH, Kim YJ et al. Optical material 2001;

: 141.

Wang K, Vygranenko Y, Nathan A et al. Thin Solid Films

: 515: 6981.

Hsueh HT, Chang SJ, Hung FY et al. Dai Superlattices

and Microstructures 2011; 49: 572.

Carcia PF, McLean RS, Reilly MH et al. J. Appl. Phys.

Lett. 2003; 82: 1117.

Chung JH, Lee JY, Kim HS et al. Thin Solid Films 2008;

: 5597.

Zhang VL, Zhang H, Bai Y et al. Solid State

Communications 2008; 146: 387.

Navamathavan R, Nirmala R, Cheul Ro Lee Vacuum

; 85: 904.

Faber H, Klaummunzer M, Voigt M et al. Wolfgang

Peukert, Erdmann Spiecker and Marcus Halik ,

Nanoscale 2011; 3: 897.

Li YB, Bando Y, Golberg D. Appl. Phys. Lett. 2004; 84

: 3603.

Zhang BP, Binh NT, Wakatsuki K et al. Appl. Phys. Lett.

; 84: 4098.

Dedova T, Volobujeva O, Klauson J et al. Nanoscale Res

.Lett. 2007; 2: 391.

Heo YW. Appl. Phys. Lett. 2004; 85: 2002.

Wang YC, Leu IC,Hon MH. Electrochemical and SolidState Letters 2002; 5(4): C53.

Jeong I-S, Kim J-H, Im S. Appl. Phys. Lett. 2003; 83: 2946.

Ohta H, Mizoguchi H, Hirano M et al. Appl. Phys. Lett.

; 82: 823.

Wang JX, Sun XW, Yang Y et al. Nanotechnology 2006;

: 4995.

Carcia PF, McLean RS, Reilly MH et al. J. Appl. Phys.

Lett. 2003; 82: 1117.

Li YB, Bando Y, Golberg D. Appl. Phys. Lett. 2004; 84:

Published

2020-05-30