Comparative Study between the J Integral and the Displacement jump methods in the Case of a Cracked Steel Structure under Static Tensile Loading
Keywords:
Modeling, Cracks, X-FEM, Steel, FIC, J Integral, Displacement jumpAbstract
The modeling of cracking is a very important issue for the structural analysis, moreover, it is a complex problem on the numerical level. Currently, conventional finite element methods are very dependent on the mesh size of the model and require a specific precision in mesh sensitivity studies and an increased computation time. New approaches based on the extended finite element method X-FEM offer a promising alternative in crack modeling and they are currently the subject of numerous work. This article reviews the modeling of cracked steel plates by the X-FEM and the computation of the stress intensity factor (SIF). After a review of the mathematical bases of fracture mechanics, the J integral method and the displacement jump method, numerical simulations of steel structures under static tensile loading were performed. We found that the displacement jump method provides better accuracy than the J integral method, which proves the effectiveness of displacement jump methods and their superior properties in certain specific situations.
References
2. Belytschko T., Black T., Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering 45(1999) 601-620.
3. Moës N., Dolbow J., Belytschko T., A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering 46(1999) 131-150.
4. Nehar K.C., Hachi B.K., Badaoui M., Guesmi M. and Benmessaoud A., The evaluation of the spectral dynamic stress intensity factor by the X-FEM method coupled with the spectral modal analysis, Asian Journal of Civil Engineering (BHRC), 17 N°6 (2016) 771-784.
5. Melenck J. M., Babuska I., The partitions of unity unite element method: Basic theory and applications, International Journal for Numerical Methods and Engineering 1996; Seminar fur Angewandte Mathematik, Zurich Switzerland.
6. Duarte C. A., Babuška I., Oden J. T., Generalized finite element methods for three-dimensional structural mechanics problems. Computers & Structures 77 N°2 (2000) 215–232.
7. Yannick J., Modélisation de la propagation de fissure sur des structures minces, soumises à des sollicitations intenses et rapides, par la méthode X-FEM. Thèse de doctorat, Soutenue le 27/06/2016 à de l’université de Lyon, France.
8. Grégoire D., Initiation, propagation, arrêt et redémarrages de fissure sous impact. Thèse de doctorat, Soutenue le 24 Octobre 2008 à INSA-Lyon, France.
9. Rice J.R., Rosengren G.F., Plane strain deformation near a crack tip in a power law hardening material, Journal of the Mechanics and Physics of Solids 16 (1968) 1-12.
10. Benmessaoud A., Badaoui M., Hachi B.K., Nehar C.K., Guesmi M., Modal stress intensity factor using extended finite element method, Applied Mechanics and Materials 232(2012) 686-90.
11. Irwin G., Analysis of stresses and strains near the end of the crack traversing the plate, Journal of Applied Mechanics 24 N°3 (1957) 361-364.
12. Guesmi M., Hachi B.K., Badaoui M., Goual M.S., Benmessaoud A., Dynamic stress intensity factor computation by using XFEM formulation, Applied Mechanics and Materials 232(2012) 716-20.