Instruments to Measure Thermal Conductivity of Engineering Materials - A Brief Review

Authors

  • Sarabjit Singh Faculty, Department of Mechanical Engineering, CGC Technical Campus, Sahibzada Ajit Singh Nagar, Punjab, India.
  • Venktesh Sharma Student, Department of Mechanical Engineering, CGC Technical Campus, Sahibzada Ajit Singh Nagar, Punjab, India. https://orcid.org/0000-0002-4598-4643
  • Shubham Narad Student, Department of Mechanical Engineering, CGC Technical Campus, Sahibzada Ajit Singh Nagar, Punjab, India.

Keywords:

Thermal conductivity, Radial heat flow method, Guarded Heat Flow Meter, Hot-wire method, laser flash method

Abstract

Insulation materials are used in various engineering applications for improving energy efficiency and performance. Efficient thermal conductivity is one of the most important factors pertaining to the determination of the efficiency of the system, so it is important to know how the material performs under various conditions in the sense of thermal conductivity and how it can be configured for better results. The aim of this paper is to paper is to identify efficacious apparatus and techniques for determining the thermal conductivity values through steady?state methods and transient methods. The review work presented herein discusses about various apparatus/methods considered and utilised by various researchers like the guarded hot plate, hot wire, modified hot wire, laser flash diffusivity, and many more, which are based on the principles of heat transfer for the measurement of thermal conductivity of engineering materials is done. These instruments have been found effective for the measurement of thermal conductivities of various materials. Such apparatuses are examined in the sense of their suitability for specific materials, such that it is possible to determine which instrument to be selected in context to the type of material for which the thermal conductivity is to be determined. Laser flash and Guarded Hot Plate apparatus are very frequently used and their use has increased for quite some time.

How to cite this article: Singh S, Sharma V, Narad S. Instruments to Measure Thermal Conductivity of Engineering Materials - A Brief Review. J Adv Res Mech Engi Tech 2020; 7(1&2): 16-25.

DOI: https://doi.org/10.24321/2454.8650.202001

References

“A radial heat-flow apparatus for liquid thermal conductivity determinations,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 245, no. 1241, pp. 259–267, Jun. 1958, doi: 10.1098/rspa.1958.0081.

J. E. S. Venart, “A simple radial heat flow apparatus for fluid thermal conductivity measurements,” J. Sci. Instrum., vol. 41, no. 12, pp. 727–731, 1964, doi: 10.1088/0950-7671/41/12/304.S

M. Rottmann, T. Beikircher, and H. P. Ebert, “Thermal conductivity of evacuated expanded perlite measured with guarded-hot-plate and transient-hot-wire method at temperatures between 295 K and 1073 K,” Int. J. Therm. Sci., vol. 152, p. 106338, Jun. 2020, doi: 10.1016/j.ijthermalsci.2020.106338.

M. K. Nayak, R. Mehmood, O. D. Makinde, O. Mahian, and A. J. Chamkha, “Magnetohydrodynamic flow and heat transfer impact on ZnO-SAE50 nanolubricant flow over an inclined rotating disk,” J. Cent. South Univ., vol. 26, no. 5, pp. 1146–1160, May 2019, doi: 10.1007/s11771-019-4077-8.

de Regt, V. Dijk, V. Mullen, D. Schram, and J. van Dijk, “Components of continuum radiation in an inductively coupled plasma,” J. Phys. D. Appl. Phys., vol. 28, no. 1, pp. 40–46, 1995, doi: 10.1088/0022-3727.

T. P. Teng, Y. H. Hung, T. C. Teng, H. E. Mo, and H. G. Hsu, “The effect of alumina/water nanofluid particle size on thermal conductivity,” Appl. Therm. Eng., vol. 30, no. 14–15, pp. 2213–2218, Oct. 2010, doi: 10.1016/j.applthermaleng.2010.05.036.

I. Nardi, E. Lucchi, T. de Rubeis, and D. Ambrosini, “Quantification of heat energy losses through the building envelope: A state-of-the-art analysis with critical and comprehensive review on infrared thermography,” Building and Environment, vol. 146. Elsevier Ltd, pp. 190–205, Dec. 01, 2018, doi: 10.1016/j.buildenv.2018.09.050.

M. S. Akhai, “Survey Analysis for Quality Control Comfort Management in Air Conditioned Classroom,” J. Adv. Res. Civ. Environ. Eng., vol. 4, no. 1&2, pp. 20–23, 2017, doi: 10.24321/2393.8307.201702.

“A radial heat-flow apparatus for liquid thermal conductivity determinations,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 245, no. 1241, pp. 259–267, Jun. 1958, doi: 10.1098/rspa.1958.0081.

F. Nouban and M. Abazid, “Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated fromNouban, F. and Abazid, M. (2017) ‘Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated from local landfill soil in Medan’, Iopscience.Iop.Org, 8(February,” Iopscience.Iop.Org, vol. 8, no. February 2018, pp. 68–74, 2017, doi: 10.1088/1755-1315.

H. Zhao, G. Fan, Z. Wei, J. Wang, and D. Huang, “ssInvestigation of thermal conductivity and related parameters of early-age cement paste,” Int. J. Heat Mass Transf., vol. 155, Jul. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119798.

T. G. GODFREY, W. FULKERSON, T. G. KOLLIE, J. P. MOORE, and D. L. McELROY, “Thermal Conductivity of Uranium Dioxide from ?57° to 1100°C by a Radial Heat Flow Technique,” J. Am. Ceram. Soc., vol. 48, no. 6, pp. 297–305, Jun. 1965, doi: 10.1111/j.1151-2916.1965.tb14745.x.

W. Alhazzani et al., “Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19),” Intensive Care Med., 2020, doi: 10.1007/s00134-020-06022-5.

A. B. Donaldson and R. E. Taylor, “Thermal diffusivity measurement by a radial heat flow method,” J. Appl. Phys., vol. 46, no. 10, pp. 4584–4589, Oct. 1975, doi: 10.1063/1.321399.

W. Zhao, Y. Yang, Z. Bao, D. Yan, and Z. Zhu, “Methods for measuring the effective thermal conductivity of metal hydride beds: A review,” International Journal of Hydrogen Energy, vol. 45, no. 11. Elsevier Ltd, pp. 6680–6700, Feb. 28, 2020, doi: 10.1016/j.ijhydene.2019.12.185.

T. Kogawa, J. Okajima, A. Komiya, S. Armfield, and S. Maruyama, “Large eddy simulation of turbulent natural convection between symmetrically heated vertical parallel plates for water,” Int. J. Heat Mass Transf., vol. 101, pp. 870–877, Oct. 2016, doi: 10.1016/j.ijheatmasstransfer.2016.04.083.

Thermal Conductivity 20. Springer US, 1989.

T. G. GODFREY, W. FULKERSON, T. G. KOLLIE, J. P. MOORE, and D. L. McELROY, “Thermal Conductivity of Uranium Dioxide from ?57° to 1100°C by a Radial Heat Flow Technique,” J. Am. Ceram. Soc., vol. 48, no. 6, pp. 297–305, 1965, doi: 10.1111/j.1151-2916.1965.tb14745.x.

B. J. Huang, C. W. Tang, and M. S. Wu, “System dynamics model of high-power LED luminaire,” Appl. Therm. Eng., vol. 29, no. 4, pp. 609–616, Mar. 2009, doi: 10.1016/j.applthermaleng.2008.03.038.

N. Bouzayani, N. Galanis, and J. Orfi, “Thermodynamic analysis of combined electric power generation and water desalination plants,” Appl. Therm. Eng., vol. 29, no. 4, pp. 624–633, Mar. 2009, doi: 10.1016/j.applthermaleng.2008.03.031.

“I. On the thermal resistance of liquids,” Proc. R. Soc. London, vol. 17, pp. 233–236, Dec. 1869, doi: 10.1098/rspl.1868.0034.

U. Hammerschmidt, “Thermal conductivity of a wide range of alternative refrigerants measured with an improved guarded hot-plate apparatus,” Int. J. Thermophys., vol. 16, no. 5, pp. 1203–1211, Sep. 1995, doi: 10.1007/BF02081288.

D. Salmon, “Thermal conductivity of insulations using guarded hot plates including recent developments and sources of reference materials,” Meas. Sci. Technol., vol. 12, no. 12, p. R89, Nov. 2001, doi: 10.1088/0957-0233/12/12/201.

W. C. Thomas and R. R. Zarr, “Thermal response simulation for tuning PID controllers in a 1016 mm guarded hot plate apparatus,” ISA Trans., vol. 50, no. 3, pp. 504–512, Jul. 2011, doi: 10.1016/j.isatra.2011.02.001.

J. Mermis-Cava, “An anchor and a sail: Christian meditation as the mechanism for a pluralist religious identity,” Sociol. Relig. A Q. Rev., vol. 70, no. 4, pp. 432–453, 2009, doi: 10.1093/socrel/srp064.

M. C. I. Siu and C. Bulik, “National Bureau of Standards line-heat-source guarded-hot-plate apparatus,” Rev. Sci. Instrum., vol. 52, no. 11, pp. 1709–1716, Nov. 1981, doi: 10.1063/1.1136518.

M. Celli, A. N. Impiombato, and A. Barletta, “Buoyancy-driven convection in a horizontal porous layer saturated by a power-law fluid: The effect of an open boundary,” Int. J. Therm. Sci., vol. 152, Jun. 2020, doi: 10.1016/j.ijthermalsci.2020.106302.

I. Yang, D. Kim, S. Lee, and H. Jang, “Construction and calibration of a large-area heat flow meter apparatus,” Energy Build., vol. 203, Nov. 2019, doi: 10.1016/j.enbuild.2019.109445.

M. A. Antar and S. M. Zubair, “The impact of fouling on performance evaluation of multi-zone feedwater heaters,” Appl. Therm. Eng., vol. 27, no. 14–15, pp. 2505–2513, Oct. 2007, doi: 10.1016/j.applthermaleng.2007.02.006.

S. Bhattacharyya, H. Chattopadhyay, and A. C. Benim, “Heat Transfer Enhancement of Laminar Flow of Ethylene Glycol through a Square Channel Fitted with Angular Cut Wavy Strip,” in Procedia Engineering, 2016, vol. 157, pp. 19–28, doi: 10.1016/j.proeng.2016.08.333.

U. Khan and C. Falconi, “Temperature distribution in membrane-type micro-hot-plates with circular geometry,” Sensors Actuators, B Chem., vol. 177, pp. 535–542, 2013, doi: 10.1016/j.snb.2012.11.007.

C. S. Sanjaya, T. H. Wee, and T. Tamilselvan, “Regression analysis estimation of thermal conductivity using guarded-hot-plate apparatus,” Appl. Therm. Eng., vol. 31, no. 10, pp. 1566–1575, Jul. 2011, doi: 10.1016/j.applthermaleng.2011.01.007.

K. S. Reddy and S. Jayachandran, “Investigations on design and construction of a square guarded hot plate (SGHP) apparatus for thermal conductivity measurement of insulation materials,” Int. J. Therm. Sci., vol. 120, pp. 136–147, 2017, doi: 10.1016/j.ijthermalsci.2017.06.001.

W. Zhao, Y. Yang, Z. Bao, D. Yan, and Z. Zhu, “Methods for measuring the effective thermal conductivity of metal hydride beds: A review,” International Journal of Hydrogen Energy, vol. 45, no. 11. pp. 6680–6700, 2020, doi: 10.1016/j.ijhydene.2019.12.185.

A. S. Wadhwa and H. S. Dhaliwal, A Textbook of Engineering Material and Metallurgy. 2008.

D. R. Flynn, “Thermal Conductivity of Loose-Fill Materials by a Radial-Heat-Flow Method,” in Compendium of Thermophysical Property Measurement Methods, Springer US, 1992, pp. 33–75.

A. Franco, “An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method,” Appl. Therm. Eng., vol. 27, no. 14–15, pp. 2495–2504, Oct. 2007, doi: 10.1016/j.applthermaleng.2007.02.008.

Y. Nagasaka and A. Nagashima, “Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method,” J. Phys. E., vol. 14, no. 12, pp. 1435–1440, 1981, doi: 10.1088/0022-3735/14/12/020.

L. Vozár, “A computer-controlled apparatus for thermal conductivity measurement by the transient hot wire method,” J. Therm. Anal., vol. 46, no. 2, pp. 495–505, 1996, doi: 10.1007/BF02135027.

P. Andersson and G. Bäckström, “Thermal conductivity of solids under pressure by the transient hot wire method,” Rev. Sci. Instrum., vol. 47, no. 2, pp. 205–209, Feb. 1976, doi: 10.1063/1.1134581.

T. Godfrey, W. Fukerson, T. Kollie, J. Moore, and D. L. McElroy, “Thermal conductivity of uranium dioxide and ARMCO iron by an improved radial heat flow technique,” vol. 4500, 1964, Accessed: May 20, 2020. [Online]. Available: https://www.osti.gov/servlets/purl/4073146.

A. Elghazaly, S. El-Konsol, A. S. Sabbah, and M. Hosni, “Anisotropic radiation transfer in a two-layer inhomogeneous slab with reflecting boundaries,” Int. J. Therm. Sci., vol. 120, pp. 148–161, Oct. 2017, doi: 10.1016/j.ijthermalsci.2017.06.006.

R. Zarzycki and Z. Bis, “Modelling of Coal Dust Gasification in a Cyclone Furnace under Oxy-fuel Combustion Conditions,” in Procedia Engineering, 2016, vol. 157, pp. 480–487, doi: 10.1016/j.proeng.2016.08.392.

T. Baba and A. Ono, “Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements,” Meas. Sci. Technol., vol. 12, no. 12, pp. 2046–2057, Nov. 2001, doi: 10.1088/0957-0233/12/12/304.

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model,” Int. J. Thermophys., vol. 19, no. 3 SPEC.ISS., pp. 941–949, May 1998, doi: 10.1023/A:1022611527321.

B. Hay, “Mesure de la diffusivité thermique par la méthode flash,” Tech. l’ingénieur, vol. 33, p. R 2 995, 2004, Accessed: May 21, 2020. [Online]. Available: http://books.google.com/books?hl=en&lr=&id=6LYJOcA3NFcC&oi=fnd&pg=PA1&dq=Mesure+de+la+diffusivité+thermique+par+la+méthode+flash&ots=weJdEzC61n&sig=ZcdGvRZdsgPOdPDy2Ma7PmmnOhQ.

T. Nishi et al., “Thermal conductivity of neptunium dioxide,” J. Nucl. Mater., vol. 376, no. 1, pp. 78–82, May 2008, doi: 10.1016/j.jnucmat.2008.01.018.

K. Rozniakowski, T. W. Wojtatowicz, A. Drobnik, and P. Klemm, “On the possibility of the application of a laser flash method to evaluate the influence of the gypsum structure on the thermal diffusivity,” Mater. Sci. Eng., vol. 96, no. C, pp. 321–324, 1987, doi: 10.1016/0025-5416(87)90566-0.

A Textbook of Engineering Materials and Metallurgy - A. Alavudeen, N. Venkateshwaran, J. T. Winowlin Jappes - Google Books. .

A. E. Wechsler, “The Probe Method for Measurement of Thermal Conductivity,” in Compendium of Thermophysical Property Measurement Methods, Plenum Press, 1992, pp. 161–185.

Published

2020-06-30

How to Cite

Singh, S., Sharma, V., & Narad, S. (2020). Instruments to Measure Thermal Conductivity of Engineering Materials - A Brief Review. Journal of Advanced Research in Mechanical Engineering and Technology, 7(1&2), 16-25. Retrieved from https://adrjournalshouse.com/index.php/mechanical-engg-technology/article/view/788