Assessment and Modification Strategies for Improved Interlaminar Properties of Advanced FRP Composites: A Review

Authors

  • Bankim Chandra Ray Composite Materials Group, Metallurgical and Materials Engineering Department, National Institute of Technology, Rourkela, Odisha-769008, India
  • Rajesh Kumar Prusty Composite Materials Group, Metallurgical and Materials Engineering Department, National Institute of Technology, Rourkela, Odisha-769008, India
  • Dinesh Kumar Rathore Composite Materials Group, Metallurgical and Materials Engineering Department, National Institute of Technology, Rourkela, Odisha-769008, India

Keywords:

polymer composites, interlaminar shear strength, fracture toughness, compression after impact, nanofiller, z-pinning, interleaving

Abstract

Demand for high strength and high toughness material with a light weight has always been a
matter of concern. The specific properties of FRP composites make it a promising candidate
for various structural applications. In the present article, we highlight the strategies for
obtaining FRP composites with enhanced interlaminar strength and toughness by various
techniques. As strength of FRP composites are mostly limited by interlaminar properties,
various ways to characterize the interfacial mechanical properties are narrated in the
beginning. Further, the ways to modify the matrix and reinforcement phases to obtain high
strength and toughness are discussed. Effect of interleaving phase on mechanical
characteristics is summarized in this article along with the various fiber architecture and
their influences. Most of the strength characterization is discussed on the basis of flexural
strength, interlaminar shear strength or tensile strength while the toughness is characterized
through fracture toughness (stress intensity factor or critical strain energy release rate).
Overall, this discussion gives a broad overview and technical viable routes to obtain a
particular combination of strength and toughness.

References

[1] B. C. Ray and D. Rathore, “Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: Critical concepts and comments,” Adv. Colloid Interface Sci., vol. 209, no. 0, pp. 68 – 83, 2014.
[2] B. C. Ray, “Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites,” J. Colloid Interface Sci., vol. 298, no. 1, pp. 111–117, Jun. 2006.
[3] B. C. Ray, “Effects of crosshead velocity and sub-zero temperature on mechanical behaviour of hygrothermally conditioned glass fibre reinforced epoxy composites,” Mater. Sci. Eng. A, vol. 379, no. 1–2, pp. 39–44, Aug. 2004.
[4] N. Chikhi, S. Fellahi, and M. Bakar, “Modification of epoxy resin using reactive liquid (ATBN) rubber,” Eur. Polym. J., vol. 38, no. 2, pp. 251–264, Feb. 2002.
[5] M. Hojo, T. Ando, M. Tanaka, T. Adachi, S. Ochiai, and Y. Endo, “Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf,” Int. J. Fatigue, vol. 28, no. 10, pp. 1154–1165, Oct. 2006.
[6] B. N. Cox, M. S. Dadkhah, and W. L. Morris, “On the tensile failure of 3D woven composites,” Compos. Part Appl. Sci. Manuf., vol. 27, no. 6, pp. 447–458, 1996.
[7] A. P. Mouritz, M. K. Bannister, P. J. Falzon, and K. H. Leong, “Review of applications for advanced three-dimensional fibre textile composites,” Compos. Part Appl. Sci. Manuf., vol. 30, no. 12, pp. 1445–1461, Dec. 1999.
[8] N. Sela and O. Ishai, “Interlaminar fracture toughness and toughening of laminated composite materials: a review,” Composites, vol. 20, no. 5, pp. 423–435, Sep. 1989.
[9] J.-K. Kim, Y.-W.Mai, and Y.-W. Mai, “Chapter 3 - Measurements of interface/interlaminar properties,” in Engineered Interfaces in Fiber Reinforced Composites, J.-K.Kim, Y.-W.Mai, and Y.-W. Mai, Eds. Oxford: Elsevier Science Ltd, 1998, pp. 43–92.
[10] C. K. H. Dharan, “Fracture Mechanics of Composite Materials,” J. Eng. Mater. Technol., vol. 100, no. 3, pp. 233–247, Jul. 1978.
[11] R. V. Silva, D. Spinelli, W. W. Bose Filho, S. Claro Neto, G. O. Chierice, and J. R. Tarpani, “Fracture toughness of natural fibers/castor oil polyurethane composites,” Compos. Sci. Technol., vol. 66, no. 10, pp. 1328–1335, Aug. 2006.
[12] G. J. Dvorak, “Composite materials: Inelastic behavior, damage, fatigue and fracture,” Int. J. Solids Struct., vol. 37, no. 1–2, pp. 155–170, Jan. 2000.
[13] J.-K. Kim and Y.-W. Mai, Engineered Interfaces in Fiber Reinforced Composites. Elsevier, 1998.
[14] D30 Committee, “Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites,” ASTM International, 2013.
[15] L. Ye, “Evaluation of Mode-I interlaminar fracture toughness for fiber-reinforced composite materials,” Compos. Sci. Technol., vol. 43, no. 1, pp. 49–54, 1992.
[16] G. CAPRINO, “The use of thin DCB specimens for measuring mode I interlaminar fracture toughness of composite materials,” Compos. Sci. Technol. - Compos. SCI TECHNOL, vol. 39, no. 2, pp. 147–158, 1990.
[17] M. S. S. Prasad, C. S. Venkatesha, and T. Jayaraju, “Experimental Methods of Determining Fracture Toughness of Fiber Reinforced Polymer Composites under Various Loading Conditions,” J. Miner.Mater.Charact. Eng., vol. 10, no. 13, p. 1263, Nov. 2011.
[18] A. B. de Morais, A. B. Pereira, M. F. S. F. de Moura, and A. G. Magalhães, “Mode {III} interlaminar fracture of carbon/epoxy laminates using the edge crack torsion (ECT) test,” Compos. Sci. Technol., vol. 69, no. 5, pp. 670 – 676, 2009.
[19] Y. Tang, L. Ye, Z. Zhang, and K. Friedrich, “Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles – A review,” Compos. Sci. Technol., vol. 86, pp. 26–37, Sep. 2013.
[20] D20 Committee, “Test Method for Impact Resistance of Flat, Rigid Plastic Specimens by Means of a Falling Dart (Tup or Falling Mass),” ASTM International, 2007.
[21] D30 Committee, “Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates,” ASTM International, 2012.
[22] V. Kostopoulos, A. Baltopoulos, P. Karapappas, A. Vavouliotis, and A. Paipetis, “Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes,” Compos. Sci. Technol., vol. 70, no. 4, pp. 553–563, Apr. 2010.
[23] D30 Committee, “Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates,” ASTM International, 2013.
[24] D30 Committee, “Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method,” ASTM International, 2013.
[25] Y. Zhou, F. Pervin, L. Lewis, and S. Jeelani, “Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes,” Mater. Sci. Eng. A, vol. 475, no. 1–2, pp. 157–165, Feb. 2008.
[26] D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Appl. Phys. Lett., vol. 76, no. 20, pp. 2868–2870, May 2000.
[27] J.-P. Salvetat, G. A. D. Briggs, J.-M.Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, N. A. Burnham, and L. Forró, “Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes,” Phys. Rev. Lett., vol. 82, no. 5, pp. 944–947, Feb. 1999.
[28] B. Fiedler, F. H. Gojny, M. H. G. Wichmann, M. C. M. Nolte, and K. Schulte, “Fundamental aspects of nano-reinforced composites,” Compos. Sci. Technol., vol. 66, no. 16, pp. 3115–3125, Dec. 2006.
[29] S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel, “Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube?Polymer Interfaces,” J. Phys. Chem. B, vol. 106, no. 12, pp. 3046–3048, Mar. 2002.
[30] T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, “Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems,” Chem. Mater., vol. 17, no. 6, pp. 1290–1295, Mar. 2005.
[31] K. S. Florian H. Gojny, “Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites,” Compos. Sci. Technol., no. 15, pp. 2303–2308, 2004.
[32] A. Eitan, K. Jiang, D. Dukes, R. Andrews, and L. S. Schadler, “Surface Modification of Multiwalled Carbon Nanotubes:? Toward the Tailoring of the Interface in Polymer Composites,” Chem. Mater., vol. 15, no. 16, pp. 3198–3201, Aug. 2003.
[33] P. C. Ma, J.-K.Kim, and B. Z. Tang, “Functionalization of carbon nanotubes using a silane coupling agent,” Carbon, vol. 44, no. 15, pp. 3232–3238, Dec. 2006.
[34] L. Sun, G. L. Warren, J. Y. O’Reilly, W. N. Everett, S. M. Lee, D. Davis, D. Lagoudas, and H.-J. Sue, “Mechanical properties of surface-functionalized SWCNT/epoxy composites,” Carbon, vol. 46, no. 2, pp. 320–328, Feb. 2008.
[35] M. M. Rahman, S. Zainuddin, M. V. Hosur, J. E. Malone, M. B. A. Salam, A. Kumar, and S. Jeelani, “Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs,” Compos. Struct., vol. 94, no. 8, pp. 2397–2406, Jul. 2012.
[36] K. S. Khare, F. Khabaz, and R. Khare, “Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions,” ACS Appl. Mater. Interfaces, vol. 6, no. 9, pp. 6098–6110, May 2014.
[37] F. H. Gojny, M. H. G. Wichmann, U. Köpke, B. Fiedler, and K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content,” Compos. Sci. Technol., vol. 64, no. 15, pp. 2363–2371, Nov. 2004.
[38] S.-J. Park and J.-S.Jin, “Effect of Silane Coupling Agent on Interphase and Performance of Glass Fibers/Unsaturated Polyester Composites,” J. Colloid Interface Sci., vol. 242, no. 1, pp. 174–179, Oct. 2001.
[39] A. T. Dibenedetto and P. J. Lex, “Evaluation of surface treatments for glass fibers in composite materials,” Polym. Eng. Sci., vol. 29, no. 8, pp. 543–555, Apr. 1989.
[40] Y. J. Ma, J. L. Wang, and X. P. Cai, “The Effect of Electrolyte on Surface Composite and Microstructure of Carbon Fiber by Electrochemical Treatment.,” Int. J. Electrochem. Sci., vol. 8, no. 2, 2013.
[41] A. Rahaman and K. K. Kar, “Effect of Coating Time and Temperature on Electroless Deposition of Cobalt-Phosphorous for the Growth of Carbon Nanotubes on the Surface of E-Glass Fibers/Fabric,” Fuller.Nanotub.Carbon Nanostructures, vol. 19, no. 5, pp. 373–397, 2011.
[42] K. K. Kar, A. Rahaman, P. Agnihotri, and D. Sathiyamoorthy, “Synthesis of Carbon Nanotubes on the Surface of Carbon Fiber/fabric by Catalytic Chemical Vapor Deposition and Their Characterization,” Fuller. Nanotub.Carbon Nanostructures, vol. 17, no. 3, pp. 209–229, 2009.
[43] K. L. Kepple, G. P. Sanborn, P. A. Lacasse, K. M. Gruenberg, and W. J. Ready, “Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes,” Carbon, vol. 46, no. 15, pp. 2026–2033, Dec. 2008.
[44] A. Rahaman and K. K. Kar, “Carbon nanomaterials grown on E-glass fibers and their application in composite,” Compos. Sci. Technol., vol. 101, pp. 1–10, Sep. 2014.
[45] P. S. Shivakumar Gouda, V. Chatterjee, P. K. Barhai, D. Jawali, S. Rahatekar, and M. R. Wisnom, “Improved fracture toughness in carbon fibre epoxy composite through novel pre-preg coating method using Epoxy Terminated Butadiene Nitrile rubber,” Mater. Des., vol. 62, pp. 320–326, Oct. 2014.
[46] K. S. Raju, B. L. Smith, J. S. Tomblin, K. H. Liew, and J. C. Guarddon, “Impact Damage Resistance and Tolerance of Honeycomb Core Sandwich Panels,” J. Compos. Mater., vol. 42, no. 4, pp. 385–412, Feb. 2008.
[47] H. Saito and I. Kimpara, “Evaluation of impact damage mechanism of multi-axial stitched CFRP laminate,” Compos. Part Appl. Sci. Manuf., vol. 37, no. 12, pp. 2226–2235, Dec. 2006.
[48] J. C. Prichard and P. J. Hogg, “The role of impact damage in post-impact compression testing,” Composites, vol. 21, no. 6, pp. 503–511, Nov. 1990.
[49] P. Potluri, P. Hogg, M. Arshad, D. Jetavat, and P. Jamshidi, “Influence of Fibre Architecture on Impact Damage Tolerance in 3D Woven Composites,” Appl. Compos. Mater., vol. 19, no. 5, pp. 799–812, Oct. 2012.
[50] F. K. Ko and D. Hartman, “Impact behaviour of 2D and 3D glass/epoxy composites,” SAMPE J, vol. 22, pp. 259–266, 1986.
[51] S. Chou, H.-C.Chen, and C.-C. Wu, “BMI resin composites reinforced with 3D carbon-fibre fabrics,” Compos. Sci. Technol., vol. 43, no. 2, pp. 117–128, 1992.
[52] S. Voss, A. Fahmy, and H. West, “Impact tolerance of laminated and 3-dimensionally reinforced graphite–epoxy panels,” presented at the International Conference on Advanced Composite Materials (ICACM) - Advanced Composites 93, 1993, pp. 591–596.
[53] F. Billaut and O. Roussel, “Impact resistance of 3-D graphite/epoxy composites,” presented at the ICCM 10, 1995.
[54] W. E. Lundblad, C. Dixon, and H. C. Ohler, “Ballistic resistant article comprising a three dimensional interlocking woven fabric,” US5456974 A, 10-Oct-1995.
[55] L. Dickinson, M. Mohammed, and E. Klang, “Impact resistance and compression properties of three-dimensional woven carbon/epoxy composites,” presented at the ECCM-4, Stuttgart. Germany, 1990, pp. 659–664.
[56] Y. Q. Ding, W. Wenger, and R. McIlhagger, “Structural characterisation and mechanical properties of 3-D woven composites,” Eur. SAMPE, pp. 1–9, 1993.
[57] F. Arendts, K. Drechsler, and J. Brandt, “Manufacturing and mechanical performance of composites with 3-D woven ?bre reinforcement,” presented at the Fourth Textile Structural Composites symposium, Philadelphia, 1989.
[58] G. L. Farley, B. T. Smith, and J. Maiden, “Compression Response of Thick Layer Composite Laminates with Through-the-Thickness Reinforcement,” J. Reinf. Plast.Compos., vol. 11, no. 7, pp. 787–810, Jul. 1992.
[59] A. P. Mouritz, C. Baini, and I. Herszberg, “Mode I interlaminar fracture toughness properties of advanced textile fibreglass composites,” Compos. Part Appl. Sci. Manuf., vol. 30, no. 7, pp. 859–870, Jul. 1999.
[60] L. Tong, A. P. Mouritz, and M. K. Bannister, “Chapter 5 - 3D Woven Composites,” in 3D Fibre Reinforced Polymer Composites, L. Tong, A. P. Mouritz, and M. K. Bannister, Eds. Oxford: Elsevier Science, 2002, pp. 107–136.
[61] K. Dransfield, C. Baillie, and Y.-W. Mai, “Improving the delamination resistance of CFRP by stitching—a review,” Compos. Sci. Technol., vol. 50, no. 3, pp. 305–317, 1994.
[62] J. Wittig, “In-mold-reinforcement of preforms by 3-dimensional tufting,” presented at the International SAMPE Symposium and Exhibition (Proceedings), 2002, vol. 47 II, pp. 1043–1051.
[63] T. Abe, K. Hayashi, T. Sato, S. Yamane, and T. Hirokawa, “A-VaRTM process and Z-anchor technology for primary aircraft structures,” Proc. 24th Int. SAMPE Eur. Conf., pp. 87–94, 2003.
[64] S. L. Huang, E. W. Deska, and R. J. Richey, Cross reinforcement in a Gr/Ep laminate. 1978.
[65] V. T. Tomashevskii, S. Y. Sitnikov, V. N. Shalygin, and V. S. Yakovlev, “A method of calculating technological regimes of transversal reinforcement of composites with short-fiber microparticles,” Mech. Compos.Mater., vol. 25, no. 3, pp. 400–406, 1989.
[66] J. S. Boyce, G. A. Freitas, C. L. Magee, T. M. Fusco, J. J. Harris, and E. Kunkel, “Ultrasonic fastening system and method,” US5800672 A, 01-Sep-1998.
[67] IvanaK Partridge, Tony Bonnington, and DenisDRCartié, “Manufacture and Performance of Z-Pinned Composites,” in Advanced Polymeric Materials, 0 vols., CRC Press, 2003.
[68] G. Freitas, C. Magee, P. Dardzinski, and T. Fusco, “Fiber insertion process for improved damage tolerance in aircraft laminates,” J Adv Mater, vol. 25, no. 4, pp. 36–43, 1994.
[69] X. Zhang, L. Hounslow, and M. Grassi, “Improvement of low-velocity impact and compression-after-impact performance by z-fibre pinning,” Compos.Sci. Technol., vol. 66, no. 15, pp. 2785–2794, 2006.
[70] J. J. Childress and G. Freitas, “Z-direction pinning of composite laminates for increased survivability,” Proc. AIAA Aerosp. Des.Conf., pp. 92–109, 1992.
[71] U. K. Vaidya, B. Duncan, and J. Kopacz, “Affordable processing and characterization of multi-functional z-pin reinforced VARTM composites,” Proc. 13th Int. Conf. Compos. Mater.
[72] I. K. Partridge, D. D. R. Cartié, M. Troulis, M. Grassi, and X. Zhang, “Evaluating the mechanical effectiveness of z-pinning,” Proc. SAMPE Tech. Conf., 2004.
[73] L. G. Stringer and M. J. Hiley, “Through-thickness reinforcement of composites: Z-pinning, stitching and 3-D weaving,” Proc 14th IntConf Compos. Mater., 2003.
[74] D. D. R. Cartié, “Effect of Z-fibres(TM) on the delamination behaviour of carbon-fibre/epoxy laminates,” Dec-2000. [Online]. Available: https://dspace.lib.cranfield.ac.uk/handle/1826/3293. [Accessed: 21-Aug-2014].
[75] A. Rezai, D. Cartié, I. Partridge, P. Irving, T. Aston, P. Negre, and J. Langer, “Interlaminar damage resistance of z-fibreTM reinforced structural CFRP,” Proc. 13th Int. Conf. Compos. Mater., 2001.
[76] A. P. Mouritz, “Review of z-pinned composite laminates,” Compos. Part Appl. Sci. Manuf., vol. 38, no. 12, pp. 2383–2397, Dec. 2007.
[77] P. Lagace and M. Kraft, “Impact Response of Graphite/Epoxy Fabric Structures,” in Proceedings of the Eighth DoD/NASA/FAA, 1989, pp. 669–671.
[78] K. B. Su, “MECHANISMS OF INTERLAMINAR FRACTURE IN A THERMOPLASTIC MATRIX COMPOSITE LAMINATE.,” 1985, pp. 995–1006.
[79] W. L. Bradley and R. N. Cohen, “Matrix deformation and fracture in graphite-reinforced epoxies In: Delamination and debonding of materials,” pp. 389–410, 1985.
[80] D. L. Hunston, “COMPOSITE INTERLAMINAR FRACTURE: EFFECT OF MATRIX FRACTURE ENERGY.,” Compos. Technol. Rev., vol. 6, no. 4, pp. 176–180, 1984.
[81] J. E. Masters, “Development of Composites Having Improved Resistance to Delamination and Impact,” AFWAL-TR-87-4113, 1987.
[82] A. Aksoy and L. A. Carlsson, “Interlaminar shear fracture of interleaved graphite/epoxy composites,” Compos.Sci. Technol., vol. 43, no. 1, pp. 55–69, 1992.

Published

2019-01-11

Most read articles by the same author(s)