In- service Performance of Fiber Reinforced Polymer Composite in Different Environmental Conditions: A Review

Authors

  • Bankim Chandra Ray Composite Materials Group, Metallurgical and Materials Engineering Department National Institute of Technology, Rourkela, Odisha-769008, India
  • Kishore Kumar Mahato Composite Materials Group, Metallurgical and Materials Engineering Department, National Institute of Technology, Rourkela, India- 769008
  • Meet Jayesh Shukla Composite Materials Group, Metallurgical and Materials Engineering Department, National Institute of Technology, Rourkela, India- 769008

Keywords:

FRP composite, Thermal conditioning, UV radiation, Sea water, alkalineenvironment, Cryogenic exposure, Mechanical behaviour, Durability

Abstract

FRP composite materials exhibit superior mechanical properties. The most promising
properties include strength to density ratio, anti- corrosion property, high toughness and
strength etc. During their service period, they are exposed to various severe environmental
conditions which include high temperature, low temperature, thermal shock, thermal spike,
UV radiation, high humidity, sea water, alkaline fluids etc. The present review focuses on in
service performance of FRP composites in diversified environmental conditions as mentioned
above. Subjecting the composite to high temperature may lead to significant mass loss and
material shrinkage. Generation of residual stresses at low temperature accelerates
delamination, debonding and matrix hardening. Thermal shock leads to sudden debonding of
fiber/ matrix interface due to catastrophic fluctuation in temperature. Decolorization of
composite is resulted under exposure to UV radiation. Moisture and sea water exposure
cause swelling in matrix and thus modify the geometry of the composite.

References

[1] L. T. Drzal, M. J. Rich, M. F. Koenig, and P. F. Lloyd, “Adhesion of Graphite Fibers to Epoxy Matrices: II. The Effect of Fiber Finish,” J. Adhes., vol. 16, no. 2, pp. 133–152, 1983.
[2] K. Kendall, “Foreword,” in Engineered Interfaces in Fiber Reinforced Composites, J.-K. Kim, Y.-W.Mai, and Y.-W. Mai, Eds. Oxford: Elsevier Science Ltd, 1998, p. v.
[3] C. Kuttner, A. Hanisch, H. Schmalz, M. Eder, H. Schlaad, I. Burgert, and A. Fery, “Influence of the Polymeric Interphase Design on the Interfacial Properties of (Fiber-Reinforced) Composites,” ACS Appl. Mater. Interfaces, vol. 5, no. 7, pp. 2469–2478, Apr. 2013.
[4] M. Guigon and E. Klinklin, “The interface and interphase in carbon fibre-reinforced composites,” Composites, vol. 25, no. 7, pp. 534–539, 1994.
[5] L. C. Hollaway, “A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties,” Constr. Build. Mater., vol. 24, no. 12, pp. 2419–2445, Dec. 2010.
[6] F. W. Clinard Jr. and G. F. Hurley, “Ceramic and organic insulators for fusion applications,” J. Nucl.Mater., vol. 103, pp. 705–715, 1981.
[7] C. Jang, T. E. Lacy, S. R. Gwaltney, H. Toghiani, and C. U. Pittman Jr., “Interfacial shear strength of cured vinyl ester resin-graphite nanoplatelet from molecular dynamics simulations,” Polymer, vol. 54, no. 13, pp. 3282–3289, Jun. 2013.
[8] A. M. Peterson, R. E. Jensen, and G. R. Palmese, “Thermoreversible and remendable glass–polymer interface for fiber-reinforced composites,” Compos. Sci. Technol., vol. 71, no. 5, pp. 586–592, Mar. 2011.
[9] U. S. N. A. and S. Administration and K. J. Bowles, A thermally modified matrix composite material with structural integrity to 371 C. [Washington, D.C.], [Springfield, Va: National Aeronautics and Space Administration, 1988.
[10] K. J. Bowles, D. Jayne, and T. A. Leonhardt, “Isothermal aging effects on PMR-15 resin,” SAMPE Q., vol. 24, no. 2, pp. 2–9, 1993.
[11] K. J. Bowles, “Thermo-oxididative stability studies of PMR-15 polymer matrix composites reinforced with various continuous fibers,” presented at the National SAMPE Symposium and Exhibition (Proceedings), 1990, vol. 35, pp. 147–161.
[12] K. J. Bowles, G. D. Roberts, and J. E. Kamvouris, “Long-term isothermal aging effects on carbon fabric-reinforced PMR-15 composites: Compression strength,” ASTM Spec. Tech. Publ., vol. 1302, pp. 175–190, 1997.
[13] J. E. Kamvouris, G. D. Roberts, J. M. Pereira, and C. Rabzak, “Physical and chemical aging effects in PMR-15 neat resin,” ASTM Spec. Tech. Publ., vol. 1302, pp. 243–258, 1997.
[14] K. Wang, B. Young, and S. T. Smith, “Mechanical properties of pultruded carbon fibre-reinforced polymer (CFRP) plates at elevated temperatures,” Eng. Struct., vol. 33, no. 7, pp. 2154–2161, Jul. 2011.
[15] M. P. Hanson, Effect of Temperature on Tensile and Creep Characteristics of PRD49 Fiber/Epoxy Composites. PN.
[16] M. B. Kasen, “Cryogenic properties of filamentary-reinforced composites: an update,” Cryogenics, vol. 21, no. 6, pp. 323–340, Jun. 1981.
[17] G. Hartwig and S. Knaak, “Fibre-epoxy composites at low temperatures,” Cryogenics, vol. 24, no. 11, pp. 639–647, Nov. 1984.
[18] D. Xu, R. Liu, J. Xia, J. Zhao, and W. Shen, “Fracture Behavior of Glass-Cloth/Polyester Composite Laminate at Low Temperature,” J. Reinf. Plast.Compos., vol. 4, no. 2, pp. 205–211, Apr. 1985.
[19] H. Lau, K. Jiang, and R. E. Rowlands, “Fracture Behavior of Extren at Room Temperature and 77 K,” J. Compos.Mater., vol. 24, no. 3, pp. 326–344, Mar. 1990.
[20] M. Gong, X. F. Wang, and J. H. Zhao, “Experimental study on mechanical behavior of laminates at low temperature,” Cryogenics, vol. 47, no. 1, pp. 1–7, Jan. 2007.
[21] W. Steven Johnson, P. Lagace, J. Masters, and L. Jc, “Polymer Composite Characterization for Automotive Structural Applications,” J. Compos.Technol. Res., vol. 12, no. 4, p. 229, 1990.
[22] P. D. Mangalgiri, “Composite materials for aerospace applications,” Bull. Mater. Sci., vol. 22, no. 3, pp. 657–664, May 1999.
[23] S. K. Makani and B. C. Ray, “Mechanical behavior of frp composites at low temperature,” in second international conference ICRACM, New-Delhi, India, 2007.
[24] B. M. Icten, C. Atas, M. Aktas, and R. Karakuzu, “Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates,” Compos.Struct., vol. 91, no. 3, pp. 318–323, Dec. 2009.
[25] Y. Hirai, H. Hamada, and J.-K.Kim, “Impact response of woven glass-fabric composites—II.Effect of temperature,” Compos. Sci. Technol., vol. 58, no. 1, pp. 119–128, Jan. 1998.
[26] M. Aktas, R. Karakuzu, and B. M. Icten, “Impact Behavior of Glass/Epoxy Laminated Composite Plates at High Temperatures,” J. Compos.Mater., vol. 44, no. 19, pp. 2289–2299, Sep. 2010.
[27] S. I. Ibekwe, P. F. Mensah, G. Li, S.-S. Pang, and M. A. Stubblefield, “Impact and post impact response of laminated beams at low temperatures,” Compos.Struct., vol. 79, no. 1, pp. 12–17, Jun. 2007.
[28] M. Sayer, N. B. Bekta?, E. Demir, and H. Çallio?lu, “The effect of temperatures on hybrid composite laminates under impact loading,” Compos. Part B Eng., vol. 43, no. 5, pp. 2152–2160, Jul. 2012.
[29] S. Shivakumar and Shivarudraiah, “Effect of Temperature on the Hygrothermal and Mechanical Behaviour of Glass-Epoxy laminates,” Int. J. Adv. Eng. Technol., vol. 1, no. 3, pp. 225–231, 2010.
[30] H. Xiaoping, H. Shenliang, and Y. Liang, “A study on dynamic fracture toughness of composite laminates at different temperatures,” Compos. Sci. Technol., vol. 63, no. 2, pp. 155–159, Feb. 2003.
[31] B. C. Ray, “Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites,” J. Colloid Interface Sci., vol. 298, no. 1, pp. 111–117, Jun. 2006.
[32] C. Prasanth, R. Saavan, S. A, and M. T, “Mode-I Fracture Analysis of Thermally Aged Glass and Glass-Carbon Hybrid Composites,” Int. J. Innov. Technol. Explor. Eng. IJITEE, vol. 3, no. 10, pp. 2278–3075, Mar. 2014.
[33] B. C. Ray, “Effect of Hydrothermal Shock Cycles on Shear Strength of Glass Fiber-polyester Composites,” J. Reinf. Plast.Compos., vol. 24, no. 12, pp. 1335–1340, Aug. 2005.
[34] B. C. Ray, “Thermal shock on interfacial adhesion of thermally conditioned glass fiber/epoxy composites,” Mater. Lett., vol. 58, no. 16, pp. 2175–2177, Jun. 2004.
[35] B. C. Ray, “Study of the influence of thermal shock on interfacial damage in thermosetting matrix aramid fiber composites,” J. Mater. Sci. Lett., vol. 22, no. 3, pp. 201–202, Feb. 2003.
[36] B. C. Ray, “Thermal Shock and Thermal Fatigue on Delamination of Glass-fiber-reinforced Polymeric Composites,” J. Reinf. Plast.Compos., vol. 24, no. 1, pp. 111–116, Jan. 2005.
[37] B. C. Ray, “Effect of thermal shock on interlaminar strength of thermally aged glass fiber-reinforced epoxy composites,” J. Appl. Polym. Sci., vol. 100, no. 3, pp. 2062–2066, May 2006.
[38] J. BOR Z, Advanced Polymer Composites: Principles and Applications. OH: ASM International Materials Park, 1994.
[39] C. Bockenheimer, D. Fata, and W. Possart, “New aspects of aging in epoxy networks.I. Thermal aging,” J. Appl. Polym. Sci., vol. 91, no. 1, pp. 361–368, Jan. 2004.
[40] B. L. Smith, T. E. Schäffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G. D. Stucky, D. E. Morse, and P. K. Hansma, “Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites,” Nature, vol. 399, no. 6738, pp. 761–763, Jun. 1999.
[41] V. Karbhari, J. Rivera, and P. Dutta, “Effect of Short-Term Freeze-Thaw Cyclingon Composite Confined Concrete,” J. Compos.Constr., vol. 4, no. 4, pp. 191–197, 2000.
[42] J. González-Benito, “The nature of the structural gradient in epoxy curing at a glass fiber/epoxy matrix interface using FTIR imaging,” J. Colloid Interface Sci., vol. 267, no. 2, pp. 326–332, Nov. 2003.
[43] C. T. Liu and C. W. Smith, “Temperature and rate effects on stable crack growth in a particulate composite material,” Exp. Mech., vol. 36, no. 3, pp. 290–295, Sep. 1996.
[44] B. C. Ray, “Thermal shock on interfacial adhesion of thermally conditioned glass fiber/epoxy composites,” Mater. Lett., vol. 58, no. 16, pp. 2175–2177, Jun. 2004.
[45] N. Mukherjee and P. K. Aditya, “A Micromechanical Model to Study Hygrothermal Shocks at the Fiber-Matrix Interface,” J. Reinf.Plast.Compos., vol. 21, no. 14, pp. 1271–1283, Sep. 2002.
[46] G. C. Papanicolaou, A. G. Xepapadaki, and G. D. Tagaris, “Effect of thermal shock cycling on the creep behavior of glass-epoxy composites,” Compos. Struct., vol. 88, no. 3, pp. 436–442, May 2009.
[47] P. E. George and H. W. Dursch, “Low earth orbit effects on organic composites flown on the long duration exposure facility,” J. Adv. Mater., vol. 25, no. 3, pp. 10–19, 1994.
[48] K. T. Kern, P. C. Stancil, and W. L. Harries, “Simulated space environmental effects on a polyetherimide and its carbon fiber-reinforced composites,” SAMPE J., vol. 29, no. 3, pp. 29–44, 1993.
[49] RAY SPERBER, “Optimal lifetimes of communications spacecraft,” in Aerospace Design Conference, 0 vols., American Institute of Aeronautics and Astronautics, 1993.
[50] J. Dauphin, “Materials in space: working in a vacuum,” Vacuum, vol. 32, no. 10–11, pp. 669–673, 1982.
[51] T. Shimokawa, H. Katoh, Y. Hamaguchi, S. Sanbongi, H. Mizuno, H. Nakamura, R. Asagumo, and H. Tamura, “Effect of Thermal Cycling on Microcracking and Strength Degradation of High-Temperature Polymer Composite Materials for Use in Next-Generation SST Structures,” J. Compos. Mater., vol. 36, no. 7, pp. 885–895, Apr. 2002.
[52] N. L. Hancox, “Thermal effects on polymer matrix composites: Part 1. Thermal cycling,” Mater.Des., vol. 19, no. 3, pp. 85–91, Jun. 1998.
[53] S. Kobayashi, K. Terada, S. Ogihara, and N. Takeda, “Damage-mechanics analysis of matrix cracking in cross-ply CFRP laminates under thermal fatigue,” Compos. Sci. Technol., vol. 61, no. 12, pp. 1735–1742, Sep. 2001.
[54] K.-B. Shin, C.-G.Kim, C.-S.Hong, and H.-H. Lee, “Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments,” Compos. Part B Eng., vol. 31, no. 3, pp. 223–235, Apr. 2000.
[55] P. J. Herrera-Franco and L. T. Drzal, “Comparison of methods for the measurement of fibre/matrix adhesion in composites,” Composites, vol. 23, no. 1, pp. 2–27, Jan. 1992.
[56] C. L. Schutte, “Environmental durability of glass-fiber composites,” Mater. Sci. Eng. R Rep., vol. 13, no. 7, pp. 265–323, Nov. 1994.
[57] S. Zhang, V. M. Karbhari, L.-Y.Mai, and Y.-W. Mai, “Evaluation of Property Retention in E-Glass/Vinylester Composites after Exposure to Salt Solution and Natural Weathering,” J. Reinf.Plast.Compos., vol. 19, no. 9, pp. 704–731, Jun. 2000.
[58] B. C. Ray, A. Biswas, and P. K. Sinha, “Freezing and thermal spikes effects on interlaminar shear strength values of hygrothermally conditioned glass fibre/epoxy composites,” J. Mater. Sci. Lett., vol. 11, no. 8, pp. 508–509, Jan. 1992.
[59] M. M. Shokrieh and A. Bayat, “Effects of ultraviolet radiation on mechanical properties of glass/polyester composites,” J. Compos.Mater., vol. 41, no. 20, pp. 2443–2455, 2007.
[60] S. K, G. Panda, and M. Kumari, “Damage and Degradation Study of FRP Composites,” BTech, 2010.
[61] A. W. Signor, M. R. VanLandingham, and J. W. Chin, “Effects of ultraviolet radiation exposure on vinyl ester resins: characterization of chemical, physical and mechanical damage,” Polym. Degrad. Stab., vol. 79, no. 2, pp. 359–368, 2003.
[62] A. Goel, K. K. Chawla, U. K. Vaidya, M. Koopman, and D. R. Dean, “Effect of UV exposure on the microstructure and mechanical properties of long fiber thermoplastic (LFT) composites,” J. Mater. Sci., vol. 43, no. 13, pp. 4423–4432, Jul. 2008.
[63] S. Pillay, U. K. Vaidya, and G. M. Janowski, “Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates,” Compos. Sci. Technol., vol. 69, no. 6, pp. 839–846, May 2009.
[64] G. S. Springer and others, Environmental effects on composite materials, vol. 2. Technomic Pennsylvania, 1981.
[65] R. Allen and R. Bauer, Moisture-related failures IN: Engineered Materials Handbook: Engineering Plastics, Vol. 2, First Edition edition., vol. 2. Metals Park,Ohio,: ASM International, 1988.
[66] L. C. Bank, T. R. Gentry, and A. Barkatt, “Accelerated Test Methods to Determine the Long-Term Behavior of FRP Composite Structures: Environmental Effects,” J. Reinf. Plast.Compos., vol. 14, no. 6, pp. 559–587, Jun. 1995.
[67] Y. Sugita, C. Winkelmann, and V. La Saponara, “Environmental and chemical degradation of carbon/epoxy lap joints for aerospace applications, and effects on their mechanical performance,” Compos. Sci. Technol., vol. 70, no. 5, pp. 829–839, May 2010.
[68] R. Gopalan, B. R. Somashekar, and B. Dattaguru, “Environmental effects on fibre—Polymer composites,” Polym. Degrad. Stab., vol. 24, no. 4, pp. 361–371, 1989.
[69] R. Gopalan, R. M. V. G. K. Rao, M. V. V. Murthy, and B. Dattaguru, “Diffusion Studies on Advanced Fibre Hybrid Composites,” J. Reinf. Plast.Compos., vol. 5, no. 1, pp. 51–61, Jan. 1986.
[70] T. Juska, “Effect of Water Immersion on Fiber/Matrix Adhesion in Thermoplastic Composites,” J. Thermoplast.Compos.Mater., vol. 6, no. 4, pp. 256–274, Oct. 1993.
[71] E. Vauthier, A. Chateauminois, and T. Bailliez, “Fatigue damage nucleation and growth in a unidirectional glass-epoxy composite subjected to hygrothermal ageing,” Polym.Polym.Compos., vol. 4, no. 5, pp. 343–350, 1996.
[72] T. S. Grant and W. L. Bradley, “In-Situ Observations in SEM of Degradation of Graphite/Epoxy Composite Materials due to Seawater Immersion,” J. Compos. Mater., vol. 29, no. 7, pp. 852–867, May 1995.
[73] J. P. Soulier, R. Berruet, A. Chateauminois, B. Chabert, and R. Gauthier, “Interactions of fibre-reinforced epoxy composites with different salt water solutions including isotonic liquid,” Polym.Commun.Guildf., vol. 29, no. 8, pp. 243–246, 1988.
[74] R. A. Naik, Micromechanical Comb. Stress Anal.-Micstran User Man., 1992.

Published

2019-01-11

Most read articles by the same author(s)